Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1132290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908799

RESUMO

Introduction: Currently, it is still a challenge to detect single-trial P300 from electroencephalography (EEG) signals. In this paper, to address the typical problems faced by existing single-trial P300 classification, such as complex, time-consuming and low accuracy processes, a single-trial P300 classification algorithm based on multiplayer data fusion convolutional neural network (CNN) is proposed to construct a centralized collaborative brain-computer interfaces (cBCI) for fast and highly accurate classification of P300 EEG signals. Methods: In this paper, two multi-person data fusion methods (parallel data fusion and serial data fusion) are used in the data pre-processing stage to fuse multi-person EEG information stimulated by the same task instructions, and then the fused data is fed as input to the CNN for classification. In building the CNN network for single-trial P300 classification, the Conv layer was first used to extract the features of single-trial P300, and then the Maxpooling layer was used to connect the Flatten layer for secondary feature extraction and dimensionality reduction, thereby simplifying the computation. Finally batch normalisation is used to train small batches of data in order to better generalize the network and speed up single-trial P300 signal classification. Results: In this paper, the above new algorithms were tested on the Kaggle dataset and the Brain-Computer Interface (BCI) Competition III dataset, and by analyzing the P300 waveform features and EEG topography and the four standard evaluation metrics, namely Accuracy, Precision, Recall and F1-score,it was demonstrated that the single-trial P300 classification algorithm after two multi-person data fusion CNNs significantly outperformed other classification algorithms. Discussion: The results show that the single-trial P300 classification algorithm after two multi-person data fusion CNNs significantly outperformed the single-person model, and that the single-trial P300 classification algorithm with two multi-person data fusion CNNs involves smaller models, fewer training parameters, higher classification accuracy and improves the overall P300-cBCI classification rate and actual performance more effectively with a small amount of sample information compared to other algorithms.

3.
Front Neurosci ; 16: 971039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958998

RESUMO

Objective: The conventional single-person brain-computer interface (BCI) systems have some intrinsic deficiencies such as low signal-to-noise ratio, distinct individual differences, and volatile experimental effect. To solve these problems, a centralized steady-state visually evoked potential collaborative BCI system (SSVEP-cBCI), which characterizes multi-person electroencephalography (EEG) feature fusion was constructed in this paper. Furthermore, three different feature fusion methods compatible with this new system were developed and applied to EEG classification, and a comparative analysis of their classification accuracy was performed with transfer learning-based convolutional neural network (TL-CNN) approach. Approach: An EEG-based SSVEP-cBCI system was set up to merge different individuals' EEG features stimulated by the instructions for the same task, and three feature fusion methods were adopted, namely parallel connection, serial connection, and multi-person averaging. The fused features were then input into CNN for classification. Additionally, transfer learning (TL) was applied first to a Tsinghua University (THU) benchmark dataset, and then to a collected dataset, so as to meet the CNN training requirement with a much smaller size of collected dataset and increase the classification accuracy. Ten subjects were recruited for data collection, and both datasets were used to gauge the three fusion algorithms' performance. Main results: The results predicted by TL-CNN approach in single-person mode and in multi-person mode with the three feature fusion methods were compared. The experimental results show that each multi-person mode is superior to single-person mode. Within the 3 s time window, the classification accuracy of the single-person CNN is only 90.6%, while the same measure of the two-person parallel connection fusion method can reach 96.6%, achieving better classification effect. Significance: The results show that the three multi-person feature fusion methods and the deep learning classification algorithm based on TL-CNN can effectively improve the SSVEP-cBCI classification performance. The feature fusion method of multi -person parallel feature connection achieves better classification results. Different feature fusion methods can be selected in different application scenarios to further optimize cBCI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...