Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Chem ; 10: 835455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198540

RESUMO

How to construct a functional unit for heat storage by using biomass materials is significant for the exploration of phase change materials (PCMs). In this work, we try to design and construct a functional unit for heat storage by employing a vacuum impregnation method to prepare sugarcane-based shape stabilized phase change materials (SSPCMs) for improving the thermal conductivity of phase change materials (PCMs) and preventing the liquid state leakage of PCMs. The morphologies of the prepared materials are characterized by Scanning electron microscope (SEM) as containing a unique channel structure which is viewed as the key factor for heat storage. X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA) were used to characterize the prepared materials. The results indicated that no chemical reaction occurred between PEG and sugarcane-based biomass during the preparation process and SSPCMs showed great thermal stability. Their thermal properties are measured by using the differential scanning calorimetry (DSC) characterization and show a high melting enthalpy of 140.04 J/g and 94.84% of the relative enthalpy efficiency, illustrating the excellent shape stabilized phase change behavior. Moreover, the highest thermal conductivity of SSPCMs is up to 0.297 W/(mK), which is 28.02% higher than that of the pristine PEG. The excellent capability for thermal energy storage is attributed to the directional thermal conduction skeletons and perfect open channels and the unique anisotropic three-dimensional structure of the SSPCMs. Hence, the unique structure with PEG is testified as the functional unit for heat storage. Comprehensively considering the excellent properties of sugarcane-based materials-providing cheap raw materials via green preparation-it is conceived that sugarcane-based materials could be applied in many energy-related devices with reasonable function unit design.

3.
Sensors (Basel) ; 18(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241311

RESUMO

The IoT system has become a significant component of next generation networks, and drawn a lot of research interest in academia and industry. As the sensor nodes in the IoT system are always battery-limited devices, the power control problem is a serious problem in the IoT system which needs to be solved. In this paper, we research the resource allocation in the wireless powered IoT system, which includes one hybrid access point (HAP) and many wireless sensor nodes, to obtain the optimal power level for information transmission and energy transfer simultaneously. The relationship between the HAP and the sensor nodes are formulated as the Stackelberg game, and the dynamic variations of the energy for both the HAP and IoT devices are formulated through the dynamic game with mean field control. Then the power control in the wireless powered IoT system is formulated as a mean field Stackelberg game model. We aim to minimize the transmission cost for each sensor node based on optimally power resource allocation. Meanwhile, we attempt to minimize the energy transfer cost based on power control. As a result, the optimal solutions based on the mean field control of the sensor nodes and the HAP are achieved through dynamic programming theory and the law of large numbers, and ε -Nash equilibriums can be obtained. The energy variations for both the sensor nodes and HAP after the control of resource allocation based on the proposed approach are verified based on the simulation results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...