Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 241(1): 142-153, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37932883

RESUMO

Plant litter is known to affect soil, community, and ecosystem properties. However, we know little about the capacity of litter to modulate grassland responses to climate change. Using a 7-yr litter removal experiment in a semiarid grassland, here we examined how litter removal interacts with a 2-yr drought to affect soil environments, plant community composition, and ecosystem function. Litter loss exacerbates the negative impacts of drought on grasslands. Litter removal increased soil temperature but reduced soil moisture and nitrogen mineralization, which substantially increased the negative impacts of drought on primary productivity and the abundance of perennial rhizomatous graminoids. Moreover, complete litter removal shifted plant community composition from grass-dominated to forb-dominated and reduced species and functional group asynchrony, resulting in lower ecosystem temporal stability. Our results suggest that ecological processes that lead to reduction in litter, such as burning, grazing, and haying, may render ecosystems more vulnerable and impair the capacity of grasslands to withstand drought events.


Assuntos
Ecossistema , Pradaria , Secas , Plantas , Solo
2.
J Environ Manage ; 337: 117769, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958283

RESUMO

Grasslands have been widely grazed for livestock production by cattle and sheep. However, previous studies have mainly focused on the impacts of single-species grazing on grassland biodiversity and ecosystem functions; the effects of mixed grazing of cattle and sheep remain largely unknown. We conducted a meta-analysis to examine the impacts of mixed grazing and analyzed the relative roles of cattle and sheep on grassland biodiversity and multiple ecosystem functions. Mixed grazing studies mainly originated from Europe, the USA, and China. Generally, cattle and sheep exhibited distinctive impacts on grassland biodiversity and functions in single-species and mixed grazing regimes. Cattle grazing alone increased plant diversity and soil organic carbon content (SOC), while sheep grazing alone had little impact. Compared to single-species grazing, mixed grazing generally increased plant density and richness of insect herbivores and decreased soil nematode richness, but did not alter plant biomass, soil nitrogen, or nematode abundance. Cattle in the mixed grazing regime increased plant diversity, biomasses of forbs and legumes, SOC, and liveweight gains of livestock. The mixed grazing impacts were further regulated by climate conditions, grazing intensity, and grazing duration. Our findings provide compelling evidence that mixed grazing benefits biodiversity, soil carbon sequestration, livestock production, and community structure of grasslands, and cattle are more influential than sheep in creating the benefits of mixed grazing for sustainable management of grasslands.


Assuntos
Ecossistema , Pradaria , Animais , Bovinos , Ovinos , Solo/química , Carbono , Biodiversidade , Plantas , Herbivoria , Gado
3.
Ann Bot ; 131(7): 1081-1095, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36661120

RESUMO

BACKGROUND AND AIMS: Growing evidence has suggested that plant responses to model soil microorganisms are context dependent; however, few studies have investigated the effects of whole soil microbial communities on plant performance in different abiotic and biotic conditions. To address this, we examined how soil phosphorus (P) availability and different planting patterns regulate soil microbial effects on the growth of two native plant species in a semiarid steppe. METHODS: We carried out a glasshouse experiment to explore the effects of the whole indigenous soil microbiota on the growth and performance of Leymus chinensis and Cleistogenes squarrosa using soil sterilization with different soil P availabilities and planting patterns (monoculture and mixture). Transcriptome sequencing (RNA-seq) was used to explain the potential molecular mechanisms of the soil microbial effects on C. squarrosa. KEY RESULTS: The soil sterilization treatment significantly increased the biomass of L. chinensis and C. squarrosa in both monoculture and mixture conditions, which indicated that the soil microbiota had negative growth effects on both plants. The addition of P neutralized the negative microbial effects for both L. chinensis and C. squarrosa, whereas the mixture treatment amplified the negative microbial effects on L. chinensis but alleviated them on C. squarrosa. Transcriptomic analysis from C. squarrosa roots underscored that the negative soil microbial effects were induced by the upregulation of defence genes. The P addition treatment resulted in significant decreases in the number of differentially expressed genes attributable to the soil microbiota, and some defence genes were downregulated. CONCLUSIONS: Our results underline that indigenous soil microbiota have negative effects on the growth of two dominant plant species from a semiarid steppe, but their effects are highly dependent on the soil P availability and planting patterns. They also indicate that defence genes might play a key role in controlling plant growth responses to the soil microbiota.


Assuntos
Fósforo , Solo , Microbiologia do Solo , Plantas , Poaceae/fisiologia
5.
Sci Total Environ ; 818: 151858, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34822882

RESUMO

The biotic drivers for the temporal stability of aboveground net productivity (ANPP) in natural ecosystems are well understood. However, knowledge gaps still exist regarding the relative importance of biotic and abiotic drivers regulating the temporal stability of aboveground productivity (ANPP), belowground net productivity (BNPP), and community net productivity (NPP) under global change and land use scenarios. Thus, in this study, we aimed to study the effects of increased water and nitrogen availability on temporal stability of ANPP, BNPP, and NPP and underlying mechanisms at sites with different long-term grazing histories in typical grasslands of the Inner Mongolia. The results suggested that resource addition affected the ANPP stability, but it did not change the stability of BNPP and NPP, which were all mediated by grazing histories. Most importantly, our study further indicated that species asynchrony, primarily contributed to the stability of ANPP and NPP by weakening their variation, and species asynchrony was regulated directly by plant diversity-related variables and indirectly by soil variables which were affected by resource addition and grazing history. In addition, an increase of ANPP stimulated under resource addition was a secondary contributor to ANPP stability. Specifically, the community-weighted mean of specific leaf area (CWM SLA) regulated the ANPP stability indirectly by promoting species asynchrony, while functional diversity of leaf area and SLA both directly controlled the BNPP stability. Findings of our study demonstrate that different mechanisms drove temporal stability of above- and belowground productivity. Our study has important implications for maintaining the temporal stability of community productivity and for establishing sustainable management practices of semi-arid grasslands under global change and land use scenarios.


Assuntos
Ecossistema , Pradaria , China , Folhas de Planta , Poaceae , Solo
6.
Sci Data ; 7(1): 403, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214562

RESUMO

Grazing and mowing are two dominant management regimes used in grasslands. Although many studies have focused on the effects of grazing intensity on plant community structure, far fewer test how grazing impacts the soil microbial community. Furthermore, the effects of long-term grazing and mowing on plant and microbial community structure are poorly understood. To elucidate how these management regimes affect plant and microbial communities, we collected data from 280 quadrats in a semiarid steppe after 12-year of grazing and mowing treatments. We measured plant species abundance, height, coverage, plant species diversity, microbial biomass, and microbial community composition (G+ and G- bacteria; arbuscular mycorrhizal and saprotrophic fungi; G+/G- and Fungi/Bacteria). In addition, we determined the soil's physical and chemical properties, including soil hardness, moisture, pH, organic carbon, total nitrogen, and total phosphorus. This is a long-term and multifactorial dataset with plant, soil, and microbial attributes which can be used to answer questions regarding the mechanisms of sustainable grassland management in terms of plant and microbial community structure.


Assuntos
Pradaria , Herbivoria , Microbiota , Plantas/classificação , Microbiologia do Solo , Bactérias/classificação , Carbono/análise , Micorrizas/classificação , Nitrogênio/análise , Fósforo/análise , Solo/química
7.
Ying Yong Sheng Tai Xue Bao ; 25(3): 639-46, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-24984478

RESUMO

Based on the data of Ningxia Hui Autonomous Region forest resources inventory, field investigation and laboratory analysis, this paper studied the carbon sequestration status of forest ecosystems in Ningxia region, estimated the carbon density and storage of forest ecosystems, and analyzed their spatial distribution characteristics. The results showed that the biomass of each forest vegetation component was in the order of arbor layer (46.64 Mg x hm(-2)) > litterfall layer (7.34 Mg x hm(-2)) > fine root layer (6.67 Mg x hm(-2)) > shrub-grass layer (0.73 Mg x hm(-2)). Spruce (115.43 Mg x hm(-2)) and Pinus tabuliformis (94.55 Mg x hm(-2)) had higher vegetation biomasses per unit area than other tree species. Over-mature forest had the highest arbor carbon density among the forests with different ages. However, the young forest had the highest arbor carbon storage (1.90 Tg C) due to its widest planted area. Overall, the average carbon density of forest ecosystems in Ningxia region was 265.74 Mg C x hm(-2), and the carbon storage was 43.54 Tg C. Carbon density and storage of vegetation were 27.24 Mg C x hm(-2) and 4.46 Tg C, respectively. Carbon storage in the soil was 8.76 times of that in the vegetation. In the southern part of Ningxia region, the forest carbon storage was higher than in the northern part, where the low C storage was mainly related to the small forest area and young forest age structure. With the improvement of forest age structure and the further implementation of forestry ecoengineering, the forest ecosystems in Ningxia region would achieve a huge carbon sequestration potential.


Assuntos
Sequestro de Carbono , Carbono/análise , Florestas , Biomassa , China , Picea , Pinus , Poaceae , Solo , Árvores
8.
Ying Yong Sheng Tai Xue Bao ; 24(3): 626-32, 2013 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-23755473

RESUMO

By the method of soil core sampling, this paper studied the fine root biomass, soil water content, and soil bulk density in 0-40 cm soil layer of four main vegetation types (Picea crassifolia forest, Pinus tabulaeformis forest, deciduous shrubs, and desert grassland) in Daluo Mountain of Ningxia, and the fine root biomass in the 0-40 cm soil layer of P. crassifolia forests with the ages of 50-, 70-, and 100 a. The fine root biomass of the four vegetation types was mainly distributed in 0-20 cm soil layer, with the rank of P. tabulaeformis forest > P. crassifolia forest > deciduous shrubs > desert grassland, and the fine root biomass of P. tabulaeformis forest was significantly higher than that of the other three vegetation types. The fine root biomass of the P. crassifolia forests with different ages was 70 a > 100 a > 50 a, and there were no significant differences in the live fine root biomass ratio and dead fine root biomass ratio among the three P. crassifolia forests. The soil water content in the 0-40 cm soil layer of the four vegetation types was P. crassifolia forest > P. tabulaeformis forest > deciduous shrubs > desert grassland, while the soil bulk density followed an opposite pattern, and was significantly negatively correlated with the fine root biomass.


Assuntos
Ecossistema , Picea/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Solo/química , Biomassa , Sequestro de Carbono , China , Rosaceae/crescimento & desenvolvimento , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...