Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37630923

RESUMO

In this study, differently shaped silver nanoparticles used for the synthesis of gold nanoclusters with small capping ligands were demonstrated. Silver nanoparticles provide a reaction platform that plays dual roles in the formation of Au NCs. One is to reduce gold ions and the other is to attract capping ligands to the surface of nanoparticles. The binding of capping ligands to the AgNP surface creates a restricted space on the surface while gold ions are being reduced by the particles. Four different shapes of AgNPs were prepared and used to examine whether or not this approach is dependent on the morphology of AgNPs. Quasi-spherical AgNPs and silver nanoplates showed excellent results when they were used to synthesize Au NCs. Spherical AgNPs and triangular nanoplates exhibited limited synthesis of Au NCs. TEM images demonstrated that Au NCs were transiently assembled on the surface of silver nanoparticles in the method. The formation of Au NCs was observed on the whole surface of the QS-AgNPs if the synthesis of Au NCs was mediated by QS-AgNPs. In contrast, formation of Au NCs was only observed on the edges and corners of AgNPts if the synthesis of Au NCs was mediated by AgNPts. All of the synthesized Au NCs emitted bright red fluorescence under UV-box irradiation. The synthesized Au NCs displayed similar fluorescent properties, including quantum yields and excitation and emission wavelengths.

2.
Bioresour Technol ; 379: 129043, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37044153

RESUMO

Integrated fixed-film activated sludge (IFAS) system has considerable advantages in treating aniline wastewater economically and efficiently. However, the response mechanism of IFAS to aniline needs further study. Herein, IFAS in continuous-flow (CF-IFAS) and batch mode (B-IFAS) were set up to investigate it. The removal efficiency of aniline exceeded 99% under different stress intensities. At low stress intensity (aniline ≈ 200 mg/L), the total nitrogen removal efficiency of B-IFAS was approximately 37.76% higher than CF-IFAS. When the stress intensity increased (aniline ≥ 400 mg/L), both were over 82%. CF-IFAS was restrained by denitrification while nitrification in B-IFAS. The legacy effect of perturbation of B-IFAS made microflora quickly reach new stability. The closer interspecific relationship in B-IFAS and more key species: Leucobacter, Rhodococcus, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Ellin6067 and norank_f_NS9_marine_group. Metabolic and Cell growth and death were the most abundant metabolic pathways, resulting both systems the excellent pollutant removal and stability under high stress intensity.


Assuntos
Reatores Biológicos , Esgotos , Águas Residuárias , Nitrificação , Nitrogênio , Redes e Vias Metabólicas , Desnitrificação , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...