Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 111(10): 2827-2838, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580692

RESUMO

Rosmarinic acid (RA) and tanshinone IIA (TA) which are effective components in Salvia miltiorrhiza show anti-inflammatory potential against atherosclerosis. Based on polysulfated propylene-polyethylene glycol (PPS-PEG), RA was grafted onto this polymer via amide bonds to form a micelle carrier for TA encapsulation: PPS-PEG-RA@TA. A potent inhibitory effect on lipopolysaccharide (LPS) -induced proliferation of endothelial cells with significant intracellular uptake was observed with this system. This could have been the result of release of TA in a reactive oxygen species (ROS) environment and stronger antioxidant effect of RA. The synergistic effect was optimized when the combination was used in a molar ratio of 1:1. Mechanistic studies showed that, compared with PPS-PEG-RA and TA+RA, PPS-PEG-RA@TA micelles could more effectively regulate the nuclear factor-kappa B (NF-κB) pathway to reduce expression of vascular cell adhesion molecule-1 (VCAM-1), inhibit the inflammatory cascade and reduce endothelial-cell injury. One month after intravenous injection of PPS-PEG-RA@TA micelles, the plaque area in murine aortic vessels was reduced significantly, and serious toxic side-effects were not observed in vivo, along with excellent biocompatibility. In summary, PPS-PEG-RA@TA micelles could achieve synergistic treatment of atherosclerosis.


Assuntos
Aterosclerose , Micelas , Abietanos , Amidas , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Cinamatos , Depsídeos , Células Endoteliais/metabolismo , Lipopolissacarídeos , Camundongos , NF-kappa B/metabolismo , Polietilenoglicóis/química , Polímeros , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Ácido Rosmarínico
2.
Front Pharmacol ; 13: 882678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548360

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by progressive and irreversible loss of lung function. Clinically safe and efficacious drug treatments for IPF are lacking. Pirfenidone (an anti-inflammatory, antioxidant and anti-fibrotic small-molecule drug) is considered a promising treatment for IPF. Unfortunately, several disadvantages of pirfenidone caused by traditional administration (e.g., gastrointestinal reactions, short elimination half-life) hinder its implementation. We designed pirfenidone pH-sensitive liposomes (PSLs) to target the acidic microenvironment of IPF and act directly at the disease site through pulmonary administration. Pirfenidone was encapsulated in liposomes to extend its half-life, and modified with polyethylene glycol on the surface of liposomes to improve the permeability of the mucus layer in airways. In vitro, the cytotoxicity of pirfenidone PSLs to pulmonary fibroblasts was increased significantly at 48 h compared with that using pirfenidone. In a murine and rat model of bleomycin-induced pulmonary fibrosis, pirfenidone PSLs inhibited IPF development and increased PSL accumulation in the lungs compared with that using pirfenidone solution or phosphate-buffered saline. Pirfenidone PSLs had potentially fewer side effects and stronger lung targeting. These results suggest that pirfenidone PSLs are promising preparations for IPF treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...