Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(34): 6483-6492, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979942

RESUMO

To evaluate the role of the charge transfer (CT) state in the singlet fission (SF) process, we prepared three 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole (TDPP) derivatives with zero (Ph2TDPP), one (Ph2TDPP-COOH), and two (Ph2TDPP-(COOH)2) carboxylic groups, respectively. Their colloidal nanoparticles were also prepared by a simple precipitation method. The SF dynamics and mechanism in these colloid nanoparticles were investigated by using steady-state/transient absorption and fluorescence spectroscopy. Steady-state absorption spectra reveal that the strength of the CT resonance interactions between the adjacent DPP units is increased gradually from Ph2TDPP to Ph2TDPP-COOH and then to Ph2TDPP-(COOH)2. Fluorescence and transient absorption spectra demonstrate that SF is proceeded via a CT-assisted superexchange mechanism in these three nanoparticles. Furthermore, SF rate and yield are enhanced gradually with the increase of the number of the carboxylic group, which may be attributed to the enhancement of the CT coupling strength. The result of this work not only provides a better understanding of the SF mechanism especially for the role of the CT state but also gives some new insights for the design of efficient SF materials based on DPP derivatives.


Assuntos
Nanopartículas , Pirróis , Fluorescência , Cetonas
2.
J Am Chem Soc ; 144(34): 15509-15518, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35930671

RESUMO

To harvest two triplet excitons of singlet fission (SF) via a two-electron transfer efficiently, the revelation of the key factors that influence the two-electron-transfer process is necessary. Here, by using steady-state and transient absorption/fluorescence spectroscopy, we investigated the two-electron-transfer process from the two triplet excitons of intramolecular SF (iSF) in a series of tetracene oligomers (dimer, trimer, and tetramer) with 7,7,8,8-tetracyanoquinodimethane (TCNQ) as an electron acceptor in solution. Quantitative two-electron transfer could be conducted for the trimer and tetramer, and the rate for the tetramer is faster than that for the trimer. However, the maximum efficiency of the two-electron transfer in the dimer is relatively low (∼47%). The calculation result of the free energy change (ΔG) of the second-electron transfer for these three compounds (-0.024, -0.061, and -0.074 eV for the dimer, trimer, and tetramer, respectively) is consistent with the experimental observation. The much closer ΔG value to zero for the dimer should be responsible for its low efficiency of the two-electron transfer. Different ΔG values for these three oligomers are attributed to the different Coulomb repulsive energies between the two positive charges generated after the two-electron transfer that is caused by their various intertriplet distances. This result reveals for the first time the important effect of the Coulomb repulsive energy, which depends on the intertriplet distance, on the two-electron transfer process from the two triplet excitons of iSF.

3.
Adv Sci (Weinh) ; 8(13): 2004456, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34258154

RESUMO

Manipulation of the co-catalyst plays a vital role in charge separation and reactant activation to enhance the activity of metal-organic framework-based photocatalysts. However, clarifying and controlling co-catalyst related charge transfer process and parameters are still challenging. Herein, three parameters are proposed, V transfer (the electron transfer rate from MOF to co-catalyst), D transfer (the electron transfer distance from MOF to co-catalyst), and V consume (the electron consume rate from co-catalyst to the reactant), related to Pt on UiO-66-NH2 in a photocatalytic process. These parameters can be controlled by rational manipulation of the co-catalyst via three steps: i) Compositional design by partial substitution of Pt with Pd to form PtPd alloy, ii) location control by encapsulating the PtPd alloy into UiO-66-NH2 crystals, and iii) facet selection by exposing the encapsulated PtPd alloy (100) facets. As revealed by ultrafast transient absorption spectroscopy and first-principles simulations, the new Schottky junction (PtPd (100)@UiO-66-NH2) with higher V transfer and V consume exhibits enhanced electron-hole separation and H2O activation than the traditional Pt/UiO-66-NH2 junction, thereby leading to a significant enhancement in the photoactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...