Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(19): 3058-3066, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38682943

RESUMO

NH3 gas sensors operating at room temperature, consisting of Ag nanoparticles decorated ß-AgVO3 nanorods (Ag/ß-AgVO3 NRs), were fabricated via a facile hydrothermal method without the need for a template. The surface characteristics and compositions of Ag/ß-AgVO3 NRs were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Ag nanoparticles, ranging in diameter from approximately 20 to 40 nm, were dispersed on the surface of monoclinic ß-AgVO3 NRs with diameters ranging from 50 to 105 nm and lengths from 0.3 to 1.3 µm. The NH3 gas sensing properties of Ag/ß-AgVO3 NRs were studied under both dry air and humid conditions at room temperature. Comparative analysis demonstrated that the Ag/ß-AgVO3 NRs exhibited a strong response to NH3 gas under 70% relative humidity (RH) at room temperature compared to α-AgVO3 NRs. Specifically, the response of the Ag/ß-AgVO3 NRs to 5 ppm NH3 increased by 2.25 times as the RH varied from 20% to 80% at room temperature. This enhanced response was attributed to the effects of formation of nanoheterojunctions, nano-metallic Ag activity and the conductivity of NH4+ and OH- ions induced by the presence of humidity. The room temperature NH3 gas sensors based on Ag/ß-AgVO3 NRs demonstrated strong responses to low NH3 concentrations, high selectivity, good reproducibility, and long-term stability, and show promise for the development of low-power and cost-effective NH3 gas sensors for practical applications even under high humidity.

2.
Anal Methods ; 15(32): 3975-3983, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37534712

RESUMO

Conifer-like TiSnO2 nanorods mixed metal oxide was synthesized via the one-pot polyol method utilizing ethylene glycol (EG), poly(diallyldimethylammonium chloride) (PDDA), tin(II) chloride dihydrate (SnCl2·2H2O), and titanium(IV)-ethylhexanoate (TE) as precursor materials, aimed at room temperature H2S gas sensing. The effects of polyol duration time and capping agent concentration (PDDA) were examined to explore the morphological, structural, and gas-sensing characteristics, as well as to propose potential growth mechanisms of conifer-like TiSnO2 nanorods mixed metal oxide. The morphology and composition of the synthesized TiSnO2 mixed metal oxide were carried out employing scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffractometry (XRD). The experimental findings demonstrated a significant influence of polyol duration time and PDDA concentration on the morphological evolution of the synthesized TiSnO2 mixed metal oxide structures. Comparative gas-sensing analysis indicated that the conifer-like TiSnO2 nanorods mixed metal oxide exhibited the highest response (2.45%) towards H2S gas at a concentration of 1 ppm, along with a low detection limit (0.20 ppm) and good linearity (R2 = 0.9865) within the range of 1-15 ppm of H2S gas at room temperature.

3.
Anal Methods ; 14(41): 4113-4121, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36214083

RESUMO

Room temperature NH3 gas sensors composed of noble metal (Au, Ag or Pt)/polythiophene/reduced graphene oxide (Au, Ag or Pt/PTh/rGO) ternary nanocomposite films were fabricated using a simple one-pot redox reaction. The surface morphology and composition of Au, Ag or Pt/PTh/rGO ternary nanocomposite films were analyzed using Fourier transform infrared spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Compared with Ag/PTh/rGO and Pt/PTh/rGO ternary nanocomposite films, obviously bright Au nanoparticles were observed on the surface of the massive lamination PTh film which wrapped the rGO, and encapsulated Au nanoparticles were observed in the Au/PTh/rGO film. Comparative gas sensing results showed that the Au/PTh/rGO ternary nanocomposite film had the highest response compared with Ag/PTh/rGO and Pt/PTh/rGO ternary nanocomposite films at room temperature, especially when the testing concentration of NH3 gas was below 5 ppm. The Au/PTh/rGO ternary nanocomposite film also had a fast response time and good reproducibility. The combination of the high catalytic activity of naked Au nanoparticles and the formation of effective carrier transfer channels by encapsulated Au nanoparticles was responsible for the improved response of the Au/PTh/rGO ternary nanocomposite film.

4.
Anal Methods ; 14(14): 1454-1461, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332349

RESUMO

Novel QCM NH3 gas sensors made of reduced graphene oxide-SnO2 (rGO-SnO2) composite films were fabricated using a one-pot technique, which is a fast and easy fabrication route that is useful for practical applications. The surface morphology and composition of the rGO-SnO2 composite films were analyzed using Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscopy coupled with energy-dispersive X-ray elemental mapping and transmission electron microscopy. On the basis of the microstructural observations, SnO2 connected to rGO sheets and naked rGO sheets were observed on the surface of the rGO-SnO2 composite films. The effects of the amount of added rGO sheets on the enhancement of the NH3 gas sensing properties of the rGO-SnO2 composite films were studied. The analysis of the adsorption dynamics (association constant) confirmed the higher sensitivity of the QCM NH3 gas sensor based on the rGO-SnO2 composite film than that of the sensor with the pristine SnO2 film.

5.
Anal Methods ; 13(6): 782-788, 2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33491679

RESUMO

ppb-level SO2 gas sensors for use at room temperature were fabricated using an in situ one-pot polyol method combined with metal organic decomposition (MOD) of nanocomposite films of multi-walled carbon nanotubes/WO3 (MWCNTs/WO3) and reduced graphene oxide/WO3 (RGO/WO3) on an alumina substrate. Comparative gas sensing results showed that the SO2 gas sensor based on the RGO/WO3 nanocomposite film exhibited a higher response compared with the MWCNTs/WO3 nanocomposite film and pristine WO3 film, sensing SO2 gas at very low (ppb-level) concentrations at room temperature. The SO2 gas sensor based on the RGO/WO3 nanocomposite film also had fast response and recovery times, good reproducibility, and the lowest detection limit. The formation of new conducting pathways and the spread of the depletion layers at the interface of the doped MWCNTs or RGO and the WO3 matrix upon interaction with SO2 gas were responsible for the enhanced response.

6.
Anal Methods ; 12(27): 3537-3544, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32672256

RESUMO

A single-yarn H2-gas sensor was fabricated by self-assembling poly(allylamine hydrochloride) (PAH), poly(styrenesulfonic acid) sodium salt (PSS), graphene oxide (GO) and Pd-based complex thin films layer-by-layer on a single-yarn and then in situ reducing the Pd-based complex to a Pd/GO/PAH/PSS/PAH multilayered thin film. The H2-gas sensing properties, effect of bending and humidity influence on this sensor were investigated. The sensor exhibited a high response and good linearity over the range of 1000 to 10 000 ppm of H2 gas. The response of the sensor decreased under both conditions of a bending angle up to 20° and ambient humidity above 50% RH. A fast Fourier transform (FFT) analyzer was employed to disperse the signals of the sensor under the conditions of bending and ambient humidity influence in the presence of H2 gas. Differentiation of the amplitude of FFT from the first-order to second-order frequency spectra effectively increased the discrimination capability of the sensor under the conditions of bending and humidity influence.

7.
Sensors (Basel) ; 20(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861747

RESUMO

A novel double-shelled hollow (DSH) structure of ZnTiO3 microrods was prepared by self-templating route with the assistance of poly(diallyldimethylammonium chloride) (PDDA) in an ethylene glycol (EG) solution, which was followed by calcining. Moreover, the NH3 gas-sensing properties of the DSH ZnTiO3 microrods were studied at room temperature. The morphology and composition of DSH ZnTiO3 microrods films were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffractometry (XRD). The formation process of double-shelled hollow microrods was discussed in detail. The comparative gas-sensing results revealed that the DSH ZnTiO3 microrods had a higher response to NH3 gas at room temperature than those of the TiO2 solid microrods and DSH ZnTiO3 microrods did in the dark. More importantly, the DSH ZnTiO3 microrods exhibited a strong response to low concentrations of NH3 gas at room temperature.

8.
Mater Sci Eng C Mater Biol Appl ; 94: 150-160, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423696

RESUMO

This work describes the development of antifouling functional coatings on the surface of low density polyethylene (LDPE) films by means of atmospheric pressure non-thermal plasma (APNTP) assisted copolymerization using a mixture of acrylic acid and poly (ethylene glycol). The aim of the study was to investigate the antifouling properties of the plasma copolymerized LDPE films and the same was carried out as a function of deposition time with fixed applied potential of 14 kV. In a second stage, the plasma copolymerized LDPE films were functionalized with chitosan (CHT) to further enhance its antifouling properties. The surface hydrophilicity, structural, topographical and chemistry of the plasma copolymerized LDPE films were examined by contact angle (CA), X-ray diffraction (XRD), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Coating stability was also studied in detail over a storage time of 15 days by storing in water and air. The antifouling properties of the plasma copolymerized LDPE films were examined via protein adsorption and platelet adhesion studies. CA study showed significant changes in surface wettability after the coating process. XPS and FTIR analysis proved the presence of a dense multifunctional coating and an efficient immobilization of CHT. Substantial amendments in surface topography were observed, positively enhancing the overall surface hydrophilicity. Finally, in-vitro analysis showed excellent antifouling behavior of the surface modified LDPE films.


Assuntos
Incrustação Biológica , Quitosana/farmacologia , Gases em Plasma/química , Polietileno/química , Polimerização , Adsorção , Animais , Proteínas Sanguíneas/metabolismo , Materiais Revestidos Biocompatíveis/química , Cabras , Humanos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Espectroscopia Fotoeletrônica , Adesividade Plaquetária , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Molhabilidade , Difração de Raios X
9.
Talanta ; 132: 398-405, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25476324

RESUMO

One-pot polyol process was combined with the metal organic decomposition (MOD) method to fabricate a room-temperature NO2 gas sensor based on tungsten oxide and reduced graphene oxide (RGO/WO3) nanocomposite films. Fourier Transform infrared spectrometer (FTIR), X-ray diffractometry (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the microstructure and morphology of the fabricated films. The electrical and NO2 gas-sensing properties of WO3 to which various amounts of RGO were added were measured in detail as a function of concentration of NO2 gas at room temperature, to elucidate the contribution of RGO to the NO2 gas-sensing capacity. The NO2 gas-sensing mechanism of the RGO/WO3 nanocomposite films were explained by considering their composition and microstructures. The sensor that was based on a nanocomposite film of RGO/WO3 exhibited a strong response to low concentrations of NO2 gas at room temperature, satisfactory linearity and favorable long-term stability.


Assuntos
Poluentes Atmosféricos/análise , Grafite/química , Nanocompostos/química , Dióxido de Nitrogênio/análise , Óxidos/química , Tungstênio/química , Técnicas de Química Analítica/instrumentação , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
10.
Talanta ; 80(2): 763-9, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19836549

RESUMO

Novel flexible NH(3) gas sensors were formed by the in situ self-assembly of polypyrrole (PPy) on plastic substrates. A negatively charged substrate was prepared by the formation of an organic monolayer (3-mercapto-1-propanesulfonic acid sodium salt-MPS) on a polyester (PET) substrate using a pair of comb-like Au electrodes. Two-cycle poly(4-styrenesulfonic acid) sodium salt/poly(allylamine hydrochloride) (PSS/PAH) bilayers (precursor layer) were then layer-by-layer (LBL) deposited on an MPS-modified substrate. Finally, a monolayer of PPy self-assembled in situ and PPy multilayer thin films self-assembled LBL in situ on a (PSS/PAH)(2)/MPS/Au/Cr/PET substrate. The thin films were analyzed by atomic force microscopy (AFM). The effects of the precursor layer (PSS), the deposition time of the monolayer of PPy and the number of PPy multilayers on the gas sensing properties (response) and the flexibility of the sensors were investigated to optimize the fabrication of the film. Additionally, other sensing properties such as sensing linearity, reproducibility, response and recovery times, as well as cross-sensitivity effects were studied. The flexible NH(3) gas sensor exhibited a strong response that was comparable to or even greater than that of sensors that were fabricated on rigid substrate at room temperature.


Assuntos
Amônia/análise , Eletroquímica/métodos , Ouro/química , Polímeros/química , Pirróis/química , Alilamina/química , Amônia/química , Eletroquímica/instrumentação , Eletrodos , Microscopia de Força Atômica , Poliésteres/química , Ácidos Sulfônicos/química
11.
Talanta ; 73(5): 857-61, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-19073112

RESUMO

In situ preparation of polypyrrole (Ppy) by photo-polymerization coated on a quartz crystal microbalance (QCM) as a low humidity sensor was reported. Different concentrations of Ppy films say 0wt.% (as blank), 0.1, 1, and 10wt.% were investigated to measure humidity concentrations between 14.7 and 5412.5ppm(v). The adsorption/desorption behavior was also examined at humidity concentration 510.2ppm(v). The sensitivities of 0, 0.1 and 1wt.% Ppy films at 51.5ppm(v) were 0.143, 0.219 and 0.427, respectively. For 1wt.% Ppy, the highest sensitivity was obtained. The slope and correlation coefficients (R(2)) for 1wt.% Ppy at the ranges of 14.7-898.6ppm(v) were 0.0646 and 0.9909, respectively. A series of molecular simulations have been carried out to calculate bond energy for the water molecule interaction with Ppy, which was found to be approximately 3kcal/mol indicating the existence of hydrogen bonding during the sorption process. Based on Langmuir isotherm adsorption assumption, for 0.1 and 1wt.% Ppy films, the association constants were 2606.30 and 5792.98, respectively. This larger association constant for 1wt.% Ppy film explains higher sensitivity.

12.
Talanta ; 69(4): 946-51, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18970662

RESUMO

A novel ceramic nanowires of TiO(2) and poly(2-acrylamido-2-methylpropane sulfonate) (TiO(2) NWs/PAMPS) composite material films coated on quartz crystal microbalance (QCM) was prepared as a low humidity sensor. The 50wt.% of TiO(2) NWs/PAMPS composite material films showed excellent sensitivity (2.63-DeltaHz/Deltappm(v)) at 31.5ppm(v)), linearity (R(2)=0.9959) and acceptable response time (64s at 34.6ppm(v)). The low humidity sensing mechanism was discussed in terms of surface texture and nanostructured morphology of the composite materials. Moreover, the adsorption dynamic analysis, molecular mechanics calculation (association constant), was used to elucidate the effect of adding 50wt.% TiO(2) NWs into PAMPS in the increased sensitivity of low humidity sensing.

13.
Talanta ; 66(5): 1247-53, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18970115

RESUMO

A composite material of dispersed organic silicon sol and poly(2-acrylamido-2-methylpropane sulfonate) (poly-AMPS) was used to make humidity sensor without protective film or complicated chemical procedures. The organic silicon sol was dispersed well in the poly-AMPS without using dispersion agent. Parameters that may affect the water-resistive but humidity-sensitive characteristic of composite material, the adding amount of organic silicon sol solution and the film of thermal treatment time, were investigated. The microstructure of the material was analyzed, and the humidity sensing and electrical properties of the sensor were measured. The sensor well responded to humidity with a relatively good linearity, though it depended on the applied frequency. The temperature influence between 15 and 35 degrees C was within -0.17% relative humidity (RH)/ degrees C in the range of 30-90% RH. The activation energy was maximum around 40% RH. The sensor showed the hysteresis within 5.9%, fast response time, long-term stability (75 days at least) and satisfactory resistance to high humidity atmosphere (97% RH) and chemical environment (20% C(2)H(5)OH vapor). Analyzing the structure and complex impedance plots of organic silicon sol/poly-AMPS was used to explain improvement in humidity sensing properties in comparison with nano-sized SiO(2) powder/poly-AMPS films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...