Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nanomaterials (Basel) ; 12(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364565

RESUMO

Toxic substance usage remains one of the major concerns that must be addressed toward the commercialization of perovskite photovoltaics. Herein, we report a highly efficient perovskite solar module (>13%) fabricated via a wet process that uses a unique aqueous Pb(NO3)2 precursor, eliminating the use of toxic organic solvents during perovskite film preparation. In addition, we demonstrate a unique pattern in a monolithically interconnected module structure to check the uniformity of perovskite film and the quality of laser scribing. Finally, we highlight that this aqueous Pb(NO3)2 precursor protocol could achieve an enormous cost reduction over conventional PbI2 organic solutions whether in the laboratory research stage or at mass production scale, strengthening the core competitiveness of perovskite solar cells in the Darwinian ocean of photovoltaic technologies.

3.
Nat Commun ; 13(1): 89, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013272

RESUMO

Cost management and toxic waste generation are two key issues that must be addressed before the commercialization of perovskite optoelectronic devices. We report a groundbreaking strategy for eco-friendly and cost-effective fabrication of highly efficient perovskite solar cells. This strategy involves the usage of a high volatility co-solvent, which dilutes perovskite precursors to a lower concentration (<0.5 M) while retaining similar film quality and device performance as a high concentration (>1.4 M) solution. More than 70% of toxic waste and material cost can be reduced. Mechanistic insights reveal ultra-rapid evaporation of the co-solvent together with beneficial alteration of the precursor colloidal chemistry upon dilution with co-solvent, which in-situ studies and theoretical simulations confirm. The co-solvent tuned precursor colloidal properties also contribute to the enhancement of the stability of precursor solution, which extends its processing window thus minimizing the waste. This strategy is universally successful across different perovskite compositions, and scales from small devices to large-scale modules using industrial spin-coating, potentially easing the lab-to-fab translation of perovskite technologies.

4.
Nat Commun ; 12(1): 3383, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099667

RESUMO

Formamidinium lead iodide perovskites are promising light-harvesting materials, yet stabilizing them under operating conditions without compromising optimal optoelectronic properties remains challenging. We report a multimodal host-guest complexation strategy to overcome this challenge using a crown ether, dibenzo-21-crown-7, which acts as a vehicle that assembles at the interface and delivers Cs+ ions into the interior while modulating the material. This provides a local gradient of doping at the nanoscale that assists in photoinduced charge separation while passivating surface and bulk defects, stabilizing the perovskite phase through a synergistic effect of the host, guest, and host-guest complex. The resulting solar cells show power conversion efficiencies exceeding 24% and enhanced operational stability, maintaining over 95% of their performance without encapsulation for 500 h under continuous operation. Moreover, the host contributes to binding lead ions, reducing their environmental impact. This supramolecular strategy illustrates the broad implications of host-guest chemistry in photovoltaics.

5.
J Am Chem Soc ; 142(47): 19980-19991, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170007

RESUMO

The use of molecular modulators to reduce the defect density at the surface and grain boundaries of perovskite materials has been demonstrated to be an effective approach to enhance the photovoltaic performance and device stability of perovskite solar cells. Herein, we employ crown ethers to modulate perovskite films, affording passivation of undercoordinated surface defects. This interaction has been elucidated by solid-state nuclear magnetic resonance and density functional theory calculations. The crown ether hosts induce the formation of host-guest complexes on the surface of the perovskite films, which reduces the concentration of surface electronic defects and suppresses nonradiative recombination by 40%, while minimizing moisture permeation. As a result, we achieved substantially improved photovoltaic performance with power conversion efficiencies exceeding 23%, accompanied by enhanced stability under ambient and operational conditions. This work opens a new avenue to improve the performance and stability of perovskite-based optoelectronic devices through supramolecular chemistry.

6.
Sci Rep ; 7(1): 7859, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798387

RESUMO

Spiro-OMeTAD with symmetric spiro-bifluorene unit has dominated the investigation of hole-transporting material (HTM) for efficient perovskite solar cells (PSCs) despite of its low intrinsic hole conductivity and instability. In this study, we designed and synthesized three asymmetric spiro-phenylpyrazole/fluorene base HTMs, namely: WY-1, WY-2 and WY-3. They exhibit excellent electrochemical properties and hole conductivities. Moreover, the PSC based on WY-1 exhibits the highest power conversion efficiency (PCE) of 14.2%, which is comparable to the control device employing spiro-OMeTAD as HTM (14.8%). These results pave the way to further optimization of both molecular design and device performance of the spiro-based HTMs.

7.
ACS Appl Mater Interfaces ; 9(10): 8623-8633, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28195454

RESUMO

Crystal morphology and structure are important for improving the organic-inorganic lead halide perovskite semiconductor property in optoelectronic, electronic, and photovoltaic devices. In particular, crystal growth and dissolution are two major phenomena in determining the morphology of methylammonium lead iodide perovskite in the sequential deposition method for fabricating a perovskite solar cell. In this report, the effect of immersion time in the second step, i.e., methlyammonium iodide immersion in the morphological, structural, optical, and photovoltaic evolution, is extensively investigated. Supported by experimental evidence, a five-staged, time-dependent evolution of the morphology of methylammonium lead iodide perovskite crystals is established and is well connected to the photovoltaic performance. This result is beneficial for engineering optimal time for methylammonium iodide immersion and converging the solar cell performance in the sequential deposition route. Meanwhile, our result suggests that large, well-faceted methylammonium lead iodide perovskite single crystal may be incubated by solution process. This offers a low cost route for synthesizing perovskite single crystal.

8.
Sci Rep ; 5: 16098, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26526771

RESUMO

In this study, the electrodeposition (ED) of ultrathin, compact TiO2 blocking layers (BLs) on fluorine-doped tin oxide (FTO) glass for perovskite solar cells (PSCs) is evaluated. This bottom-up method allows for controlling the morphology and thickness of TiO2 films by simply manipulating deposition conditions. Compared with BLs produced using the spin-coating (SC) method, BLs produced using ED exhibit satisfactory surface coverage, even with a film thickness of 29 nm. Evidence from cyclic voltammetry shows that an ED BL suppresses interfacial recombination more profoundly than an SC BL does, consequently improving the photovoltaic properties of the PSC significantly. A PSC equipped with an ED TiO2 BL having a 13.6% power conversion efficiency is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...