Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 61(33): 10012-10020, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36606834

RESUMO

Optical fibers are the core elements for various fiber-optic applications in communication, lasers, sensors, tweezers, quantum optics, and bio-photonics. Current optical fibers are based on a core-cladding structure with different refractive indices and are mainly fabricated using the stack-draw method. However, such a traditional fabrication method limits the realization of fibers with various advanced optical materials, thereby restricting the utilization of excellent optical properties offered by these materials. In this study, a novel structure for side-array cladding by laser drilling on the side of the fiber with homogeneous material is proposed. Accordingly, the confinement loss, mode characteristics, birefringence, and dispersion of the side-array cladding fiber are investigated based on the numerical simulation performed via the finite element method. Subsequently, an optimal fiber structure is obtained by taking the crystal material as an example. Essentially, our proposed side-array cladding fiber can eliminate the mismatch problem of core-cladding materials in the current stack-draw fabrication method. Potentially, the proposed approach can serve as a standard design and fabrication method of optical fibers with homogeneous material, by utilizing the rapid development of laser processing. In other words, a large number of advanced optical materials can be fabricated into optical fibers with the proposed technique, thus maximizing their technical advantages for different applications.

2.
Opt Express ; 26(7): 9039-9049, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715862

RESUMO

Symmetrical dual D-shape photonic crystal fibers (PCFs) for surface plasmon resonance (SPR) sensing are designed and analyzed by the finite element method (FEM). The performance of the sensor is remarkably enhanced by the directional power coupling between the two fibers. We study the influence of the structural parameters on the performance of the sensor as well as the relationship between the resonance wavelengths and analyze refractive indexes between 1.36 and 1.41. An average spectral sensitivity of 14660 nm/RIU can be achieved in this sensing range and the corresponding refractive index resolution is 6.82 × 10-6 RIU. The characteristics of a single D-shape PCF-SPR sensor with the same structural parameters are compared with those of the dual PCFs sensor and the latter has distinct advantages concerning the spectral sensitivity, resolution, amplitude sensitivity, and figure of merits (FOM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...