Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29994638

RESUMO

Molecular dynamics (MD) is a computer simulation method of studying physical movements of atoms and molecules that provide detailed microscopic sampling on molecular scale. With the continuous efforts and improvements, MD simulation gained popularity in materials science, biochemistry and biophysics with various application areas and expanding data scale. Assisted Model Building with Energy Refinement (AMBER) is one of the most widely used software packages for conducting MD simulations. However, the speed of AMBER MD simulations for system with millions of atoms in microsecond scale still need to be improved. In this paper, we propose a parallel acceleration strategy for AMBER on the Tianhe-2 supercomputer. The parallel optimization of AMBER is carried out on three different levels: fine grained OpenMP parallel on a single CPU, single node CPU/MIC parallel optimization and multi-node multi-MIC collaborated parallel acceleration. By the three levels of parallel acceleration strategy above, we achieved the highest speedup of 25-33 times compared with the original program.


Assuntos
Biologia Computacional/instrumentação , Biologia Computacional/métodos , Simulação de Dinâmica Molecular , Algoritmos , Computadores
2.
Artigo em Inglês | MEDLINE | ID: mdl-28641267

RESUMO

Molecular Dynamics (MD) is the simulation of the dynamic behavior of atoms and molecules. As the most popular software for molecular dynamics, GROMACS cannot work on large-scale data because of limit computing resources. In this paper, we propose a CPU and Intel® Xeon Phi Many Integrated Core (MIC) collaborated parallel framework to accelerate GROMACS using the offload mode on a MIC coprocessor, with which the performance of GROMACS is improved significantly, especially with the utility of Tianhe-2 supercomputer. Furthermore, we optimize GROMACS so that it can run on both the CPU and MIC at the same time. In addition, we accelerate multi-node GROMACS so that it can be used in practice. Benchmarking on real data, our accelerated GROMACS performs very well and reduces computation time significantly. Source code: https://github.com/tianhe2/gromacs-mic.


Assuntos
Metodologias Computacionais , Simulação de Dinâmica Molecular , Software
4.
J Comput Biol ; 24(12): 1230-1242, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29116822

RESUMO

Multiple sequence alignment (MSA) is an essential prerequisite and dominant method to deduce the biological facts from a set of molecular biological sequences. It refers to a series of algorithmic solutions for the alignment of evolutionarily related sequences while taking into account evolutionary events such as mutations, insertions, deletions, and rearrangements under certain conditions. These methods can be applied to DNA, RNA, or protein sequences. In this work, we take advantage of a center-star strategy to reduce the MSA problem to pairwise alignments, and we use a suffix tree to match identical substrings between two pairwise sequences. Multiple sequence alignment based on a suffix tree and center-star strategy (MASC) can accomplish MSA in O(mn), which is linear time complexity, where m is the number of sequences and n is the average length of sequences. Furthermore, we execute our method on the Spark-distributed parallel framework to deal with ever-increasing massive data sets. Our method is significantly faster than previous techniques, with no loss in accuracy for highly similar nucleotide sequences like homologous sequences, which we experimentally demonstrate. Comparing with mainstream MSA tools (e.g., MAFFT), MASC could finish the alignment of 67,200 sequences, longer than 10,000 bps, in 9 minutes, which takes MAFFT >3.5 days.


Assuntos
DNA/química , Proteínas/química , RNA/química , Alinhamento de Sequência/métodos , Software , Algoritmos , Biologia Computacional/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...