Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893607

RESUMO

Anthocyanidin reductase (ANR) is an important regulator of flavonoid metabolism, and proanthocyanidins, the secondary metabolites of flavonoids, play an important role in the response of plants to pathogenic stress. Therefore, in this study, the expression analysis of the ANR gene family of Gossypium barbadense after inoculation with Fusarium oxysporum f. sp. vasinfectum (FOV) was performed at different time points. It was found that Gb_ANR-47 showed significant differences in the disease-resistant cultivar 06-146 and the susceptible cultivar Xinhai 14, as well as in the highest root expression. It was found that the expression of Gb_ANR-47 in the resistant cultivar was significantly higher than that in the susceptible cultivar by MeJA and SA, and different amounts of methyl jasmonate (MeJA) and salicylic acid (SA) response elements were found in the promoter region of Gb_ANR-47. After silencing GbANR-47 in 06-146 material by VIGS technology, its resistance to FOV decreased significantly. The disease severity index (DSI) was significantly increased, and the anthocyanin content was significantly decreased in silenced plants, compared to controls. Our findings suggest that GbANR-47 is a positive regulator of FOV resistance in Gossypium barbadense. The research results provide an important theoretical basis for in-depth analysis of the molecular mechanism of GbANR-47 and improving the anti-FOV of Gossypium barbadense.

2.
BMC Genomics ; 22(1): 395, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044774

RESUMO

BACKGROUND: Domain of unknown function 668 (DUF668) may play a crucial role in the plant growth and developmental response to adverse stress. However, our knowledge of the function of the DUF668 gene family is limited. RESULTS: Our study was conducted based on the DUF668 gene family identified from cotton genome sequencing. Phylogenetic analysis showed that the DUF668 family genes can be classified into four subgroups in cotton. We identified 32 DUF668 genes, which are distributed on 17 chromosomes and most of them located in the nucleus of Gossypium hirsutum. Gene structure and motif analyses revealed that the members of the DUF668 gene family can be clustered in G. hirsutum into two broad groups, which are relatively evolutionarily conserved. Transcriptome data analysis showed that the GhDUF668 genes are differentially expressed in different tissues under various stresses (cold, heat, drought, salt, and Verticillium dahliae), and expression is generally increased in roots and stems. Promoter and expression analyses indicated that Gh_DUF668-05, Gh_DUF668-08, Gh_DUF668-11, Gh_DUF668-23 and Gh_DUF668-28 in G. hirsutum might have evolved resistance to adverse stress. Additionally, qRT-PCR revealed that these 5 genes in four cotton lines, KK1543 (drought resistant), Xinluzao 26 (drought sensitive), Zhongzhimian 2 (disease resistant) and Simian 3 (susceptible), under drought and Verticillium wilt stress were all significantly induced. Roots had the highest expression of these 5 genes before and after the treatment. Among them, the expression levels of Gh_DUF668-08 and Gh_DUF668-23 increased sharply at 6 h and reached a maximum at 12 h under biotic and abiotic stress, which showed that they might be involved in the process of adverse stress resistance in cotton. CONCLUSION: The significant changes in GhDUF668 expression in the roots after adverse stress indicate that GhDUF668 is likely to increase plant resistance to stress. This study provides an important theoretical basis for further research on the function of the DUF668 gene family and the molecular mechanism of adverse stress resistance in cotton.


Assuntos
Gossypium , Verticillium , Ascomicetos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Filogenia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Verticillium/genética
3.
Neurol Sci ; 40(9): 1901-1907, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31104169

RESUMO

BACKGROUND: Conflicting results identifying the association between Brain-derived neurotrophic factor (BDNF) polymorphism, Val66Met, and cognitive impairment in Parkinson's disease (PD) have been reported. METHODS AND RESULTS: To clarify whether Val66Met is related to cognitive impairment in PD, we carried out this meta-analysis by searching literature from PubMed, Web of Science, and Embase databases regarding this polymorphism. Six eligible studies involving 1467 PD patients were included in this meta-analysis. Our results showed statistically significant association between Val66Met and risk of cognitive impairment in PD patients in additive model (Met/Met vs. Val/Val: OR 3.82, 95%CI 1.32 to 11.08, p = 0.01) and recessive model (Met/Met vs. Val-carrier: OR 3.81, 95%CI 1.38 to 10.53, p = 0.01) except for dominant model. CONCLUSIONS: Our meta-analysis implicates Val66Met BDNF polymorphism may be associated with Parkinson's disease cognitive impairment, further well-designed studies with larger populations are required to validate these results owing to the limited research.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Disfunção Cognitiva/genética , Doença de Parkinson/genética , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...