Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
JRSM Cardiovasc Dis ; 9: 2048004020906994, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32110389

RESUMO

PURPOSE: Chronic thromboembolic pulmonary hypertension is characterized by incomplete thrombus resolution following acute pulmonary embolism, leading to pulmonary hypertension and right ventricular dysfunction. Conditions such as thrombophilias, dysfibrinogenemias, and inflammatory states have been associated with chronic thromboembolic pulmonary hypertension, but molecular mechanisms underlying this disease are poorly understood. We sought to characterize the molecular and functional features associated with chronic thromboembolic pulmonary hypertension using a multifaceted approach. METHODS: We utilized functional assays to compare clot lysis times between chronic thromboembolic pulmonary hypertension patients and multiple controls. We then performed immunohistochemical characterization of tissue from chronic thromboembolic pulmonary hypertension, pulmonary arterial hypertension, and healthy controls, and examined RNA expression patterns of cultured lymphocytes and pulmonary arterial specimens. We then confirmed RNA expression changes using immunohistochemistry, immunofluorescence, and Western blotting in pulmonary arterial tissue. RESULTS: Clot lysis times in chronic thromboembolic pulmonary hypertension patients are similar to multiple controls. Chronic thromboembolic pulmonary hypertension endarterectomized tissue has reduced expression of both smooth muscle and endothelial cell markers. RNA expression profiles in pulmonary arteries and peripheral blood lymphocytes identified differences in RNA transcript levels related to inflammation and growth factor signaling, which we confirmed using immunohistochemistry. Gene expression data also suggested significant alterations in metabolic pathways, and immunofluorescence and Western blot experiments confirmed that unglycosylated CD36 and adiponectin expression were increased in chronic thromboembolic pulmonary hypertension versus controls. CONCLUSIONS: Our data do not support impaired clot lysis underlying chronic thromboembolic pulmonary hypertension, but did demonstrate distinct molecular patterns present both in peripheral blood and in pathologic specimens of chronic thromboembolic pulmonary hypertension patients suggesting that altered metabolism may play a role in chronic thromboembolic pulmonary hypertension pathogenesis.

2.
Pharmacogenet Genomics ; 27(7): 247-254, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28542097

RESUMO

BACKGROUND: Anthracyclines are important chemotherapeutic agents, but their use is limited by cardiotoxicity. Candidate gene and genome-wide studies have identified putative risk loci for overt cardiotoxicity and heart failure, but there has been no comprehensive assessment of genomic variation influencing the intermediate phenotype of anthracycline-related changes in left ventricular (LV) function. The purpose of this study was to identify genetic factors influencing changes in LV function after anthracycline chemotherapy. METHODS: We conducted a genome-wide association study (GWAS) of change in LV function after anthracycline exposure in 385 patients identified from BioVU, a resource linking DNA samples to de-identified electronic medical record data. Variants with P values less than 1×10 were independently tested for replication in a cohort of 181 anthracycline-exposed patients from a prospective clinical trial. Pathway analysis was performed to assess combined effects of multiple genetic variants. RESULTS: Both cohorts were middle-aged adults of predominantly European descent. Among 11 candidate loci identified in discovery GWAS, one single nucleotide polymorphism near PR domain containing 2, with ZNF domain (PRDM2), rs7542939, had a combined P value of 6.5×10 in meta-analysis. Eighteen Kyoto Encyclopedia of Gene and Genomes pathways showed strong enrichment for variants associated with the primary outcome. Identified pathways related to DNA repair, cellular metabolism, and cardiac remodeling. CONCLUSION: Using genome-wide association we identified a novel candidate susceptibility locus near PRDM2. Variation in genes belonging to pathways related to DNA repair, metabolism, and cardiac remodeling may influence changes in LV function after anthracycline exposure.


Assuntos
Antraciclinas/farmacologia , Estudo de Associação Genômica Ampla , Transdução de Sinais/genética , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Esquerda/genética , Adulto , Estudos de Coortes , Demografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Volume Sistólico/genética
3.
Amyloid ; 23(4): 242-248, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27809600

RESUMO

BACKGROUND: Cardiac amyloidosis is an infiltrative cardiomyopathy that is challenging to diagnose. We hypothesized that the novel biomarkers hepatocyte growth factor (HGF), galectin-3 (GAL-3), interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF) would be elevated in cardiac amyloidosis and may be able to discriminate from non-cardiac systemic amyloidosis or other cardiomyopathies with similar clinical or morphologic characteristics. METHODS: Patients were selected from the Vanderbilt Main Heart Registry according to the following groups: (1) amyloid light-chain (AL) cardiac amyloidosis (n = 26); (2) transthyretin (ATTR) cardiac amyloidosis (n = 7); (3) left ventricular hypertrophy (LVH) (n = 45); (4) systolic heart failure (n = 42); and (5) non-cardiac systemic amyloidosis (n = 7). Biomarkers were measured in stored plasma samples. Biomarkers' discrimination performance in predicting AL cardiac amyloidosis (i.e., Concordance index) was reported. A survival analysis was used to explore the relationship between HGF levels and mortality among AL cardiac amyloidosis patients. RESULTS: HGF levels were markedly elevated in patients with AL cardiac amyloidosis (median = 622, interquartile range (IQR): 299-1228 pg/mL) compared with the other groups, including those with non-cardiac systemic amyloidosis (median = 134, IQR: 94-163 pg/mL, p < 0.001). HGF was not a specific marker for ATTR amyloidosis. Gal-3 was elevated in all groups with amyloidosis but could not differentiate between those with and without cardiac involvement. There was no difference in IL-6 or VEGF between those with AL cardiac amyloidosis compared to other groups (p = 0.13 and 0.057, respectively). CONCLUSIONS: HGF may be a specific marker that distinguishes AL cardiac amyloidosis from other cardiomyopathies with similar clinical or morphologic characteristics. Further studies are necessary to determine whether HGF levels predict the likelihood of survival.


Assuntos
Amiloidose/diagnóstico , Cardiomiopatias/diagnóstico , Insuficiência Cardíaca Sistólica/diagnóstico , Fator de Crescimento de Hepatócito/sangue , Hipertrofia Ventricular Esquerda/diagnóstico , Sistema de Registros , Idoso , Amiloidose/sangue , Amiloidose/complicações , Amiloidose/mortalidade , Biomarcadores/sangue , Proteínas Sanguíneas , Cardiomiopatias/sangue , Cardiomiopatias/complicações , Cardiomiopatias/mortalidade , Estudos de Coortes , Diagnóstico Diferencial , Feminino , Galectina 3/sangue , Galectinas , Insuficiência Cardíaca Sistólica/sangue , Insuficiência Cardíaca Sistólica/mortalidade , Humanos , Hipertrofia Ventricular Esquerda/sangue , Hipertrofia Ventricular Esquerda/mortalidade , Cadeias Leves de Imunoglobulina/sangue , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Pré-Albumina/metabolismo , Análise de Sobrevida , Fator A de Crescimento do Endotélio Vascular/sangue
4.
Circ Cardiovasc Genet ; 6(4): 317-26, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23861363

RESUMO

BACKGROUND: Whole exome sequencing is a powerful technique for Mendelian disease gene discovery. However, variant prioritization remains a challenge. We applied whole exome sequencing to identify the causal variant in a large family with familial dilated cardiomyopathy of unknown pathogenesis. METHODS AND RESULTS: A large family with autosomal dominant, familial dilated cardiomyopathy was identified. Exome capture and sequencing were performed in 3 remotely related, affected subjects predicted to share <0.1% of their genomes by descent. Shared variants were filtered for rarity, evolutionary conservation, and predicted functional significance, and remaining variants were filtered against 71 locally generated exomes. Variants were also prioritized using the Variant Annotation Analysis and Search Tool. Final candidates were validated by Sanger sequencing and tested for segregation. There were 664 shared heterozygous nonsense, missense, or splice site variants, of which 26 were rare (minor allele frequency ≤0.001 or not reported) in 2 public databases. Filtering against internal exomes reduced the number of candidates to 2, and of these, a single variant (c.1907 G>A) in RBM20, segregated with disease status and was absent in unaffected internal reference exomes. Bioinformatic prioritization with Variant Annotation Analysis and Search Tool supported this result. CONCLUSIONS: Whole exome sequencing of remotely related dilated cardiomyopathy subjects from a large, multiplex family, followed by systematic filtering, identified a causal RBM20 mutation without the need for linkage analysis.


Assuntos
Cardiomiopatia Dilatada/genética , Exoma , Proteínas de Ligação a RNA/genética , Adolescente , Adulto , Alelos , Cardiomiopatia Dilatada/patologia , Criança , Pré-Escolar , Estudos de Coortes , Biologia Computacional , Bases de Dados Genéticas , Feminino , Frequência do Gene , Ligação Genética , Genótipo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Análise de Sequência de DNA , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...