Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(2): 619-628, 2022 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-35075836

RESUMO

In order to investigate the pollution characteristics and sources of water-soluble ions in atmospheric PM2.5 in different regions of central China during summer, Wuhan, Suizhou, and Pingdingshan were selected as urban, suburban, and rural monitoring stations, respectively, to collect PM2.5 samples, and the mass concentration of PM2.5 in the atmosphere and the contents of eight water-soluble ions were analyzed. The results showed that ρ(water-soluble ions) at the three sites showed obvious spatial distribution characteristics, with Pingdingshan[(36.29±9.82) µg·m-3] > Wuhan[(32.55±10.05) µg·m-3] > Suizhou[(26.10±6.23) µg·m-3], accounting for 52.47%, 51.32%, and 48.61% of the PM2.5 mass concentration, respectively. In the Pingdingshan station, the proportion of water-soluble ions was the largest due to biomass combustion in the rural area. Additionally, SNA (SO42-, NO3-, and NH4+) were the main ionic components, accounting for 95.65%, 96.12%, and 97.33% of the total water-soluble ions, respectively. The mean values of SOR of the Wuhan (0.64) and Suizhou (0.63) stations were higher than that of the Pingdingshan station (0.50), whereas the NOR values of the Wuhan (0.18) and Pingdingshan (0.19) stations were higher than that of the Suizhou station (0.15). The difference in SOR and NOR among stations was affected by the secondary conversion mechanism, the ammonia-rich environment, and the surrounding traffic sources, respectively. The PM2.5 at the Wuhan and Pingdingshan stations was in general alkaline, whereas at the Suizhou station it was neutral or weakly acidic, which was mainly caused by differences in NH4+. NH4+ mainly existed in the form of (NH4)2SO4 and NH4NO3 at the Wuhan and Pingdingshan stations, whereas at the Suizhou station it mainly existed in the form of (NH4)2SO4 or (NH4)HSO4. PCA-MLR analysis revealed that the Wuhan (89.27%) and Suizhou (67.38%) stations were the most affected by secondary conversion sources, whereas the Wuhan station was also affected by industrial sources (8.54%) and coal sources (2.27%). The pollution sources of the Suizhou station also included biomass combustion (24.42%) and dust sources (8.25%). The Pingdingshan station was most affected by biomass combustion (58.37%), followed by dust and combustion sources (38.05%) and traffic sources (3.58%). The analysis of potential sources of SNA (PSCF) showed that the main potential source areas of Wuhan were the boundary of Hubei, Henan, and Anhui and the southwest area of Anhui. Suizhou and Pingdingshan were affected by long-distance transport, and the main potential source regions were distributed in Shanghai, Jiangsu, and Anhui provinces from the east coast to the west.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Estações do Ano , Água
2.
Huan Jing Ke Xue ; 43(2): 859-866, 2022 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-35075859

RESUMO

In order to understand the pollution characteristics, spatial distribution, potential sources, and ecological risk of heavy metals in the sediments of Tangxun Lake, the contents of heavy metals (As, Hg, Cd, Cr, Cu, Pb, Zn, and Ni) in the surface sediments of Tangxun Lake were analyzed, and the pollution status and potential ecological risk degree of heavy metals in the sediments were evaluated using the geo-accumulation index and potential ecological risk index. The potential sources of heavy metal pollutants were analyzed by correlation and principal component analysis. The results showed that except for Cr, the contents of other heavy metals were higher than their background values. The contents of Hg, Cd, Zn, and Cu were higher in the southwest and northeast corners of the lake, which may come from the combined pollution of sewage discharge, fisheries, and surrounding industrial and agricultural activities. The geo-accumulation index and potential ecological risk showed that Hg and Cd were in moderate pollution; Cu, Pb, and Zn were in non-light pollution; and As, Cr, and Ni were in non-pollution. Except for Hg and Cd, there were serious and serious potential ecological risks, and the other elements were at a low risk level. The heavy metals in the surface sediments of Tangxun Lake showed a high ecological risk level.


Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise
3.
Huan Jing Ke Xue ; 42(11): 5122-5130, 2021 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-34708951

RESUMO

In recent years, frequent haze episodes have resulted in the deterioration of air quality of the Fenwei Plain during winter and holidays. Besides coal combustion and industrial emissions, the topography and climate of the Fenwei Plain were also the main causes of the haze. The samples were collected in Linfen of Fenwei Plain during the Spring Festival from February 2 to February 13, 2019. The 13 elements(Li, Be, Ti, Rb, Sc, Y, La, Ce, Zr, V, Tl, U, and Sn) in PM2.5 were determined by inductively coupled plasma mass spectrometry(ICP-MS). Combined with the meteorological data, the spatial and temporal distribution of pollutants and potential source analysis were evaluated by cluster analysis and backward trajectory. The average concentration of SO2 was 58.39 µg·m-3 during the sampling period, which exceeded the 24 h average mass concentration limit(50.00 µg·m-3) of national ambient air quality standard(GB 3095-2012). The average concentrations of O3, NO2, and CO was 52.15 µg·m-3, 29.02 µg·m-3, and 2.29 mg·m-3, respectively. The results showed that SO2 was the dominated pollutant. NO2 and CO were mainly affected by diffusion from urban areas. The backward trajectory analysis indicated that the basin topography of the Fenwei Plain may be the main cause of the haze. The analysis of potential source contribution function(PSCF) of soil sources showed that the potential dominated areas included Northern Shaanxi, southern Gansu and Southern Ningxia., which were mainly affected by the monsoon climate.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Férias e Feriados , Material Particulado/análise , Estações do Ano
4.
Huan Jing Ke Xue ; 42(10): 4593-4601, 2021 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-34581101

RESUMO

To explore the pollution characteristics and potential health risks of heavy metals in PM2.5 on haze days in Central China, PM2.5 samples were collected from the Huanggang monitoring station, a regional observation point in Central China, between January 13 and 24, 2018. The contents of Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Sn, and Pb in PM2.5 were analyzed by inductively coupled plasma mass spectrometry(ICP-MS), and the enrichment factor method was used to determine the potential risk based on the exposure model recommended by the Environmental Protection Administration(EPA). The results showed that during the observation period, the concentrations of Zn in PM2.5 were highest, and the concentrations of the carcinogens As and Cd were higher than the secondary standard limits of China's ambient air quality standard(GB 3095-2012), with 70% of these elemental concentrations accounting for the largest proportion in the middle haze period. The enrichment factor analysis showed that Cd, Sn, Co, Pb, and Zn were the most abundant elements, especially during the middle haze period, and were mostly derived from transportation and coal combustion. The results of the human health risk assessment showed that exposure via hand-mouth feeding was the main non-carcinogenic risk, and the exposure and non-carcinogenic risks of children were significantly higher than those of adults. Pb poses a non-carcinogenic risk to children, while heavy metals in PM2.5 pose no non-carcinogenic risks to adults and carcinogenic heavy metals pose no carcinogenic risks.


Assuntos
Metais Pesados , Material Particulado , Adulto , Criança , China , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Material Particulado/análise , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...