Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 166, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009583

RESUMO

3-dB couplers, which are commonly used in photonic integrated circuits for on-chip information processing, precision measurement, and quantum computing, face challenges in achieving robust performance due to their limited 3-dB bandwidths and sensitivity to fabrication errors. To address this, we introduce topological physics to nanophotonics, developing a framework for topological 3-dB couplers. These couplers exhibit broad working wavelength range and robustness against fabrication dimensional errors. By leveraging valley-Hall topology and mirror symmetry, the photonic-crystal-slab couplers achieve ideal 3-dB splitting characterized by a wavelength-insensitive scattering matrix. Tolerance analysis confirms the superiority on broad bandwidth of 48 nm and robust splitting against dimensional errors of 20 nm. We further propose a topological interferometer for on-chip distance measurement, which also exhibits robustness against dimensional errors. This extension of topological principles to the fields of interferometers, may open up new possibilities for constructing robust wavelength division multiplexing, temperature-drift-insensitive sensing, and optical coherence tomography applications.

2.
Sci Total Environ ; 718: 137288, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32087585

RESUMO

The performance of a lab-scale integrated anoxic and aerobic inverse fluidized bed bioreactors (IFBBR) for biological nutrient removal from synthetic municipal wastewater was studied at chemical oxygen demand (COD) loading rates of 0.34-2.10 kg COD/(m3-d) and nitrogen loading rates of 0.035-0.213 kg N/(m3-d). Total COD removal efficiencies of >84% were achieved, concomitantly with complete nitrification. The overall nitrogen removal efficiencies were >75%. Low biomass yields of 0.030-0.101 g VSS/g COD were achieved. Compared with other FBBR systems, the energy consumption for this IFBBR system was an average 59% less at organic loading rates (OLRs) of 1.02 and 2.10 kg COD/(m3-d). Bacterial community structures of attached and suspended biomass revealed that the dominant phyla were Proteobacteria, Bacteroidetes, and Epsilonbacteraeota, etc. The relative abundance of ammonia-oxidizing bacteria (AOBs) and nitrite-oxidizing bacteria (NOBs) in the aerobic attached biomass were 0.451% and 0.110%, respectively. COD mass balance in the anoxic zone was closed by consideration of sulfate reduction, which was confirmed by the presence of genus Chlorobium (sulfate-reducing bacteria) in the anoxic attached biofilm with a relative abundance of 0.32%.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Análise da Demanda Biológica de Oxigênio , Nitrificação , Nitrogênio , Águas Residuárias
4.
FEMS Yeast Res ; 18(6)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931272

RESUMO

This study employed cell recycling, batch adaptation, cell mating and high-throughput screening to select adapted Spathaspora passalidarum strains with improved fermentative ability. The most promising candidate YK208-E11 (E11) showed a 3-fold increase in specific fermentation rate compared to the parental strain and an ethanol yield greater than 0.45 g/g substrate while co-utilizing cellobiose, glucose and xylose. Further characterization showed that strain E11 also makes 40% less biomass compared to the parental strain when cultivated in rich media under aerobic conditions. A tetrazolium agar overlay assay in the presence of respiration inhibitors, including rotenone, antimycin A, KCN and salicylhydroxamic acid elucidated the nature of the mutational events. Results indicated that E11 has a deficiency in its respiration system that could contribute to its low cell yield. Strain E11 was subjected to whole genome sequencing and an ∼11 kb deletion was identified; the open reading frames absent in strain E11 code for proteins with predicted functions in respiration, cell division and the actin cytoskeleton, and may contribute to the observed physiology of the adapted strain. Results of the tetrazolium overlay also suggest that cultivation on xylose affects the respiration capacity in the wild-type strain, which could account for its faster fermentation of xylose as compared to glucose. These results support our previous finding that S. passalidarum has highly unusual physiological responses to xylose under oxygen limitation.


Assuntos
Adaptação Fisiológica , Microbiologia Industrial , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Biomassa , Etanol/metabolismo , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Viabilidade Microbiana , Oxigênio/metabolismo , Saccharomycetales/genética , Saccharomycetales/fisiologia , Análise de Sequência de DNA , Deleção de Sequência , Açúcares/metabolismo
5.
PLoS One ; 13(1): e0190589, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29329350

RESUMO

BACKGROUND: Lingual nerve injury or neuropraxia is a rare but potentially serious perioperative complication following airway instrumentation during general anesthesia. This study explored the the incidence and perioperative risk factors for lingual nerve injury in patients receiving laryngeal mask (LMA) or endotracheal (ETGA) general anesthesia in a single center experience. METHODS AND RESULTS: All surgical patients in our hospital who received LMA or ETGA from 2009 to 2013 were included, and potential perioperative risk factors were compared. Matched controls were randomly selected (in 1:5 ratio) from the same database in non-case patients. A total of 36 patients in the records had reported experiencing tongue numbness after anesthesia in this study. Compared with the non-case surgical population (n = 54314), patients with tongue numbness were significantly younger (52.2±19.5 vs 42.0±14.5; P = 0.002) and reported lower ASA physical statuses (2.3±0.7 vs 1.6±0.6; P<0.001). Patient gender, anesthesia technique used, and airway device type (LMA or ETGA) did not differ significantly across the two groups. A significantly higher proportion of patients underwent operations of the head-and-neck region (38.9 vs 15.6%; P = 0.002) developed tongue numbness after anesthesia. Multivariate logistic regression analysis indicated that head-and-neck operations remained the most significant independent risk factor for postoperative lingual nerve injury (AOR 7.63; 95% CI 2.03-28.70). CONCLUSION: The overall incidence rate of postoperative lingual neuropraxy was 0.066% in patients receiving general anesthesia with airway device in place. Young and generally healthy patients receiving head-and-neck operation are at higher risk in developing postoperative lingual neuropraxy. Attention should be particularly exercised to reduce the pressure of endotracheal tube or laryngeal mask on the tongue during head-and-neck operation to avert the occurrence of postoperative lingual neuropraxy.


Assuntos
Máscaras Laríngeas/efeitos adversos , Traumatismos do Nervo Lingual/etiologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias , Estudos Retrospectivos , Fatores de Risco
6.
Bioresour Technol ; 200: 780-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26580895

RESUMO

Lipid production by oleaginous yeasts is optimal at high carbon-to-nitrogen ratios. In the current study, nitrogen and carbon consumption by Lipomyces starkeyi were directly measured in defined minimal media with nitrogen content and agitation rates as variables. Shake flask cultures with an initial C:N ratio of 72:1 cultivated at 200rpm resulted in a lipid output of 10g/L, content of 55%, yield of 0.170g/g, and productivity of 0.06g/L/h. All of these values decreased by ≈50-60% when the agitation rate was raised to 300rpm or when the C:N ratio was lowered to 24:1, demonstrating the importance of these parameters. Under all conditions, L. starkeyi cultures tolerated acidified media (pH≈2.6) without difficulty, and produced considerable amounts of alcohols; including ethanol, mannitol, arabitol, and 2,3-butanediol. L. starkeyi also produced lipids from a corn stover hydrolysate, showing its potential to produce biofuels from renewable agricultural feedstocks.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/biossíntese , Lipomyces/metabolismo , Nitrogênio/farmacologia , Oxigênio/farmacologia , Aerobiose/efeitos dos fármacos , Amônia/metabolismo , Biocombustíveis , Carbono/análise , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Lipomyces/efeitos dos fármacos , Polímeros/metabolismo , Metabolismo Secundário/efeitos dos fármacos , Resíduos , Zea mays/química
7.
Biotechnol Bioeng ; 112(3): 457-69, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25164099

RESUMO

Spathaspora passalidarum NN245 (NRRL-Y27907) is an ascomycetous yeast that displays a higher specific fermentation rate with xylose than with glucose. Previous studies have shown that its capacity for xylose fermentation increases while cell yield decreases with decreasing aeration. Aeration optimization plays a crucial role in maximizing bioethanol production from lignocellulosic hydrolysates. Here, we compared the kinetics of S. passalidarum NN245 and Scheffersomyces (Pichia) stipitis NRRL Y-7124 fermenting 15% glucose, 15% xylose, or 12% xylose plus 3% glucose under four different aeration conditions. The maximum specific fermentation rate for S. passalidarum was 0.153 g ethanol/g CDW · h with a yield of 0.448 g/g from 150 g/L xylose at an oxygen transfer rate of 2.47 mmol O2 /L h. Increasing the OTR to 4.27 mmol O2 /L h. decreased the ethanol yield from 0.46 to 0.42 g/g xylose while increasing volumetric ethanol productivity from 0.52 to 0.8 g/L h. Both yeasts had lower cells yields and higher ethanol yields when growing on xylose than when growing on glucose. Acetic acid accretions of both strains correlated positively with increasing aeration. S. passalidarum secreted lower amounts of polyols compared to S. stipitis under most circumstances. In addition, the composition of polyols differed: S. passalidarum accumulated mostly xylitol and R,R-2,3-butanediol (BD) whereas S. stipitis accumulated mostly xylitol and ribitol when cultivated in xylose or a mixture of 12% xylose and 3% glucose. R,R-2,3-BD accumulation by S. passalidarum during xylose fermentation can be as much as four times of that by S. stipitis, and R,R-2,3-BD is also the most abundant byproduct after xylitol. The ratios of polyols accumulated by the two species under different aeration conditions and the implications of these observations for strain and process engineering are discussed.


Assuntos
Etanol/metabolismo , Oxigênio/metabolismo , Polímeros/metabolismo , Saccharomycetales/metabolismo , Ácido Acético/análise , Ácido Acético/metabolismo , Biocombustíveis , Etanol/análise , Fermentação , Glucose/metabolismo , Cinética , Polímeros/análise , Xilose/metabolismo
8.
Cardiovasc Diabetol ; 11: 66, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22694778

RESUMO

BACKGROUND: It has been suggested that the antioxidant properties of olmesartan (OLM), an angiotensin II type 1 receptor (AT(1)R) blocker, contribute to renal protection rather than blood pressure lowering effects despite the fact that causal relationships between hypertension and renal artery disease exist. This study aimed to examine the hypothesis whether the antioxidative activities of OLM were correlated to arterial stiffness, reactive oxygen species and advanced glycation end products (AGEs) formation in rats with chronic renal failure (CRF). METHODS: CRF rats were induced by 5/6 nephrectomy and randomly assigned to an OLM (10 mg/day) group or a control group. Hemodynamic states, oxidative stress, renal function and AGEs were measured after 8 weeks of OLM treatment. RESULTS: All the hemodynamic derangements associated with renal and cardiovascular dysfunctions were abrogated in CRF rats receiving OLM. Decreased cardiac output was normalized compared to control (p <0.05). Mean aortic pressure, total peripheral resistance and left ventricular weight/body weight ratio were reduced by 21.6% (p <0.05), 28.2% (p <0.05) and 27.2% ((p <0.05). OLM also showed beneficial effects on the oscillatory components of the ventricular after-load, including 39% reduction in aortic characteristic impedance (p < 0.05), 75.3% increase in aortic compliance (p <0.05) and 50.3% increase in wave transit time (p < 0.05). These results implied that OLM attenuated the increased systolic load of the left ventricle and prevented cardiac hypertrophy in CRF rats. Improved renal function was also reflected by increases in the clearances of BUN (28.7%) and serum creatinine (SCr, 38.8%). In addition to these functional improvements, OLM specifically reduced the levels of malondialdehyde (MDA) equivalents in aorta and serum by 14.3% and 25.1%, as well as the amount of AGEs in the aortic wall by 32% (p < 0.05) of CRF rats. CONCLUSION: OLM treatment could ameliorate arterial stiffness in CRF rats with concomitant inhibition of MDA and AGEs levels through the reduction of oxidative stress in aortic wall.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Imidazóis/farmacologia , Falência Renal Crônica/tratamento farmacológico , Tetrazóis/farmacologia , Rigidez Vascular/efeitos dos fármacos , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Modelos Animais de Doenças , Produtos Finais de Glicação Avançada/metabolismo , Hemodinâmica/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Falência Renal Crônica/etiologia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/fisiopatologia , Masculino , Malondialdeído/metabolismo , Nefrectomia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
9.
Appl Environ Microbiol ; 78(16): 5492-500, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22636012

RESUMO

Fermentation of cellulosic and hemicellulosic sugars from biomass could resolve food-versus-fuel conflicts inherent in the bioconversion of grains. However, the inability to coferment glucose and xylose is a major challenge to the economical use of lignocellulose as a feedstock. Simultaneous cofermentation of glucose, xylose, and cellobiose is problematic for most microbes because glucose represses utilization of the other saccharides. Surprisingly, the ascomycetous, beetle-associated yeast Spathaspora passalidarum, which ferments xylose and cellobiose natively, can also coferment these two sugars in the presence of 30 g/liter glucose. S. passalidarum simultaneously assimilates glucose and xylose aerobically, it simultaneously coferments glucose, cellobiose, and xylose with an ethanol yield of 0.42 g/g, and it has a specific ethanol production rate on xylose more than 3 times that of the corresponding rate on glucose. Moreover, an adapted strain of S. passalidarum produced 39 g/liter ethanol with a yield of 0.37 g/g sugars from a hardwood hydrolysate. Metabolome analysis of S. passalidarum before onset and during the fermentations of glucose and xylose showed that the flux of glycolytic intermediates is significantly higher on xylose than on glucose. The high affinity of its xylose reductase activities for NADH and xylose combined with allosteric activation of glycolysis probably accounts in part for its unusual capacities. These features make S. passalidarum very attractive for studying regulatory mechanisms enabling bioconversion of lignocellulosic materials by yeasts.


Assuntos
Celobiose/metabolismo , Glucose/metabolismo , Saccharomycetales/metabolismo , Xilose/metabolismo , Animais , Besouros/microbiologia , Etanol/metabolismo , Fermentação , Metaboloma , Saccharomycetales/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...