Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210205, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35694749

RESUMO

Intralocus sexually antagonistic selection occurs when an allele is beneficial to one sex but detrimental to the other. This form of selection is thought to be key to the evolution of sex chromosomes but is hard to detect. Here we perform an analysis of phased young sex chromosomes to look for signals of sexually antagonistic selection in the Japan Sea stickleback (Gasterosteus nipponicus). Phasing allows us to date the suppression of recombination on the sex chromosome and provides unprecedented resolution to identify sexually antagonistic selection in the recombining region of the chromosome. We identify four windows with elevated divergence between the X and Y in the recombining region, all in or very near genes associated with phenotypes potentially under sexually antagonistic selection in humans. We are unable, however, to rule out the alternative hypothesis that the peaks of divergence result from demographic effects. Thus, although sexually antagonistic selection is a key hypothesis for the formation of supergenes on sex chromosomes, it remains challenging to detect. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Assuntos
Smegmamorpha , Alelos , Animais , Japão , Fenótipo , Cromossomos Sexuais/genética , Smegmamorpha/genética
2.
Eur J Med Res ; 26(1): 147, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34920757

RESUMO

BACKGROUND: The outbreak of novel coronavirus disease 2019 (COVID-19) has become a public health emergency of international concern. Quantitative testing of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus is demanded in evaluating the efficacy of antiviral drugs and vaccines and RT-PCR can be widely deployed in the clinical assay of viral loads. Here, we developed a quantitative RT-PCR method for SARS-CoV-2 virus detection in this study. METHODS: RT-PCR kits targeting E (envelope) gene, N (nucleocapsid) gene and RdRP (RNA-dependent RNA polymerase) gene of SARS-CoV-2 from Roche Diagnostics were evaluated and E gene kit was employed for quantitative detection of COVID-19 virus using Cobas Z480. Viral load was calculated according to the standard curve established by series dilution of an E-gene RNA standard provided by Tib-Molbiol (a division of Roche Diagnostics). Assay performance was evaluated. RESULTS: The performance of the assay is acceptable with limit of detection (LOD) below 10E1 copies/µL and lower limit of quantification (LLOQ) as 10E2 copies/µL. CONCLUSION: A quantitative detection of the COVID-19 virus based on RT-PCR was established.


Assuntos
COVID-19/diagnóstico , Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Humanos , Limite de Detecção , Fosfoproteínas/genética , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Carga Viral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...