Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Transl Res ; 13(8): 8754-8765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539992

RESUMO

BACKGROUND: Increasing evidence has suggested that high uric acid (HUA) is closely related to cardiovascular disease (CVD). Mitophagy abnormalities have been reported to participate in multiple pathogenic processes of CVD. However, the potential molecular mechanisms remain unclear. Herein, we investigated the effect of HUA-induced mitophagy and its potential molecular mechanism in cardiomyocytes. METHODS: We established a model of cardiomyocytes induced by HUA in vitro and in vivo. Mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production and adenosine triphosphate (ATP) content were measured. The mitophagy-related protein expression of LC3B-II, Parkin, Ca2+/calmodulin-dependent protein kinase II δ (CaMKIIδ) and P62 was measured by Western blot. Based on the colocalization of lysosomes and mitochondria, a confocal microscope was used to detect mitophagy. Additionally, we established a mitophagy inhibitor group (3-MA) and CaMKIIδ inhibitor group (KN-93) to verify the pathway. RESULTS: In the HUA stimulation model, ROS production was increased, and mitochondrial injury indexes (MMP and ATP contents) were decreased. Moreover, these indicators were reversed by 3-MA and KN-93. Under HUA stimulation, the expression of LC3B-II, Parkin, CaMKIIδ and P62 increased significantly. Furthermore, these protein levels were reduced by 3-MA and KN-93. CONCLUSION: HUA can promote cardiomyocyte mitophagy activation through the ROS/CaMKIIδ/parkin pathway axis. This study may provide a new target and theoretical basis for the prevention and treatment of HUA-related metabolic heart disease in the future.

2.
Mol Cell Endocrinol ; 495: 110507, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31315024

RESUMO

Clinical studies have demonstrated that cigarette smoking is strongly associated with insulin resistance and heart disease. Nicotine is considered the primary toxin constituent associated with smoking. However, the distinct molecular mechanism of nicotine-induced cardiac dysfunction remains unclear. Cardiomyocytes with nicotine-induced insulin resistance are characterized by decreased glucose uptake, as measured by 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG), a fluorescent derivative of glucose, and reactive oxygen species (ROS) generation. Immunoblotting was used to evaluate the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), extracellular signal-related kinase (ERK) and phosphoinositide 3-kinase (PI3K, p85, Y607). We determined the impact of nicotine on insulin resistance and Nrf2, phospho-ERK and phospho-PI3K expression in the myocardial tissue of a mouse model. Nicotine increased ROS production and depressed insulin-induced glucose uptake in cardiomyocytes. Pretreatment with N-acetyl-L-cysteine (NAC), an antioxidant, reversed nicotine-inhibited glucose uptake induced by insulin. Nicotine exposure directly inhibited Nrf2 and increased ERK phosphorylation in cardiomyocytes, which were obstructed by NAC. Further exploration of signaling cascades revealed nicotine-induced ROS involved in inhibiting PI3K/Nrf2 and activating ERK in cardiomyocytes. Moreover, the mouse model treated with nicotine showed glucose intolerance and impaired insulin tolerance accompanied by inhibited PI3K/Nrf2 and increased ERK in myocardial tissues. Thus, nicotine induces insulin resistance via the downregulation of Nrf2 activity in cardiomyocytes, which is a potential mechanism of the pharmacological effects of nicotine. This study identified potential therapeutic targets against nicotine-related cardiovascular diseases.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Resistência à Insulina , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Nicotina/farmacologia , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Animais , Linhagem Celular , Desoxiglucose/análogos & derivados , Desoxiglucose/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Heme Oxigenase-1/metabolismo , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...