Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 223(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807971

RESUMO

By hybridization and special sexual reproduction, we sequentially aggregated Zea mays, Zea perennis, and Tripsacum dactyloides in an allohexaploid, backcrossed it with maize, derived self-fertile allotetraploids of maize and Z. perennis by natural genome extraction, extended their first six selfed generations, and finally constructed amphitetraploid maize using nascent allotetraploids as a genetic bridge. Transgenerational chromosome inheritance, subgenome stability, chromosome pairings and rearrangements, and their impacts on an organism's fitness were investigated by fertility phenotyping and molecular cytogenetic techniques genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH). Results showed that diversified sexual reproductive methods produced highly differentiated progenies (2n = 35-84) with varying proportions of subgenomic chromosomes, of which one individual (2n = 54, MMMPT) overcame self-incompatibility barriers and produced a self-fertile nascent near-allotetraploid by preferentially eliminating Tripsacum chromosomes. Nascent near-allotetraploid progenies showed persistent chromosome changes, intergenomic translocations, and rDNA variations for at least up to the first six selfed generations; however, the mean chromosome number preferably maintained at the near-tetraploid level (2n = 40) with full integrity of 45S rDNA pairs, and a trend of decreasing variations by advancing generations with an average of 25.53, 14.14, and 0.37 for maize, Z. perennis, and T. dactyloides chromosomes, respectively. The mechanisms for three genome stabilities and karyotype evolution for formatting new polyploid species were discussed.


Assuntos
Cromossomos de Plantas , Zea mays , Zea mays/genética , Hibridização in Situ Fluorescente , Cromossomos de Plantas/genética , Genoma de Planta , Poaceae/genética , Poliploidia
2.
Planta ; 249(6): 1949-1962, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30895446

RESUMO

MAIN CONCLUSION: Tripsacum dactyloides is closely related to Zea mays since Zea perennis and the MTP tri- species hybrid have four possible reproductive modes. Eastern gamagrass (Tripsacum dactyloides L.) and tetraploid perennial teosinte (Zea perennis) are well known to possess genes conferring resistance against biotic and abiotic stresses as well as adaptation to flood and aluminum toxic soils. However, plant breeders have been hampered to utilize these and other beneficial traits for maize improvement due to sterility in their hybrids. By crossing a tetraploid maize-inbred line × T. dactyloides, a female fertile hybrid was produced that was crossed with Z. perennis to yield a tri-genomic female fertile hybrid, which was backcrossed with diploid maize to produce BC1 and BC2. The tri-genomic hybrid provided a new way to transfer genetic material from both species into maize by utilizing conventional plant breeding methods. On the basis of cytogenetic observations using multi-color genomic in situ hybridization, the progenies were classified into four groups, in which chromosomes could be scaled both up and down with ease to produce material for varying breeding and genetic purposes via apomixis or sexual reproduction. In the present study, pathways were found to recover maize and to obtain specific translocations as well as a speedy recovery of the T. dactyloides-maize addition line in a second backcross generation. However, phenotypes of the recovered maize were in most cases far from maize as a result of genetic load from T. dactyloides and Z. perennis, and could not be directly used as a maize-inbred line but could serve as an intermediate material for maize improvement. A series of hybrids was produced (having varying chromosome number, constitution, and translocations) with agronomic traits from all three parental species. The present study provides an application of overcoming the initial interspecific barriers among these species. Moreover, T. dactyloides is closely related to Z. mays L. ssp. mays since Z. perennis and the MTP tri- species hybrid have four possible reproductive modes.


Assuntos
Cromossomos de Plantas/genética , Fluxo Gênico , Especiação Genética , Genoma de Planta/genética , Poaceae/genética , Zea mays/genética , Apomixia , Quimera , Segregação de Cromossomos , Hibridização In Situ , Fenótipo , Melhoramento Vegetal , Poliploidia , Reprodução , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...