Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 7(6): e2201679, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929317

RESUMO

Memristive switching devices with electrically and optically invoked synaptic behaviors show great promise in constructing an artificial biological visual system. Through rational design and integration, 2D materials and their van der Waals (vdW) heterostructures can be applied to realize multifunctional optoelectronic devices. Here, a multifunctional optoelectronic synaptic memtransistor based on a SnSe/MoS2 vdW p-n heterojunction to simulate the human biological visual system is reported. By employing simple mild UV-ozone treatment, the device exhibits reversible resistive switching (RS) behavior with switching ratio up to 103 . The retina-like selective response to different input light wavelengths is activated, as well as programmable multilevel resistance states and long-term synaptic plasticity. Moreover, memory and logic functions analogous to those found in the visual cortex of the brain are performed by controlling the optical and electrical input signals. This work proposes a feasible strategy to modulate RS in vdW heterostructures for memristive devices, which show significant potential for neuromorphic processing.

2.
Nanotechnology ; 31(5): 055706, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31614344

RESUMO

Highly dispersed CoTe electrode material were successfully prepared by using a facile one-step solvothermal process without any surfactants. Compared with the conventional hydrothermally prepared irregularly-shaped CoTe, a regular nanowire-formed CoTe can be obtained by a solvothermal process using ethylene glycol as a solvent. The prepared CoTe nanowire electrode can exhibit a relatively high specific capacity of 643.6 F g-1 at a current density of 1 A g-1 and remarkable cyclic stability with 76.9% of its specific capacitance retention after 5000 cycles at a high current density of 5 A g-1. Besides, even at the high current density of 20 A g-1, the specific capacitance of CoTe nanowire electrode still has 90.2% retention relative to 1 A g-1, showing an excellent rate performance. In order to enlarge the potential window to increase the energy density, an asymmetric supercapacitor (ASC) is assembled by applying CoTe nanowires and activated carbon as the positive electrode and the negative electrode in 3 M KOH, which can enlarge the operating voltage to as high as 1.6 V, and shows a specific capacity of 92.5 F g-1 with an energy density of 32.9 Wh kg-1 and power density of 800.27 W kg-1 at 1 A g-1, and even after 5000 cycles of charge/discharge at 5 A g-1, the ASC still retains 90.5% of its initial specific capacitance, showing excellent cycle stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...