Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(48): 54041-54052, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33201670

RESUMO

In this work, a facile strategy was proposed to prepare a series of brushlike thermoplastic polyurethane (TPU) coatings with mechanically robust, self-cleaning, and icephobic performance. Through a simple multicomponent click reaction of thiolactone with a diamine compound and mono-ethenyl-terminated polydimethylsiloxane (mono-ethenyl-PDMS), a diol with amide groups and flexible PDMS was synthesized, and a novel TPU could be obtained productively by a reaction of isocyanate and diol. The unique chain structure endowed TPU films with ascendant self-stratifying properties. During solvent vapor annealing, flexible PDMS chains migrated and enriched to the surface while urethane linkages with a strong interaction tended to locate at the substrate. Based on this, TPU-PDMS films exhibited mechanically robust property, and the tensile strength value of TPU-PDMS-3 showed a sharp increase to 48.62 MPa. The resultant TPU-PDMS-10 coatings exhibited a water repellent behavior and possessed superior movability of droplet water, and also the dirt on it could be readily removed by rinsing with water without leaving any traces. Furthermore, three different criteria were used to characterize the icephobic performance. The coatings exhibited a significantly lower freezing point (approximately -27 °C) of supercooled water, longer delay-icing time, and less ice adhesion shear strength. Therefore, these novel brushlike TPU coatings have tremendous potential applications.

2.
J Colloid Interface Sci ; 549: 201-211, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039456

RESUMO

Oil-in-oil emulsions are ideal systems for water-sensitive reactions such as polymerizations and catalytic reactions, which has received extensive attention in recent years. The application of oil-in-oil emulsions has been developed slowly due to the limited types of surfactants and complicated synthesis process. Herein, we proposed a simple method to prepare poly(amide-thioether)-based surfactant for oil-in-oil emulsions via taking advantage of single-pot multicomponent and click characters of thiolactone chemistry. Using a combination of alkyl amine and acrylamide thiolactone, the aminolysis of thiolctone occurred first, generating thiol group in-situ, and then the generated thiol group would sequentially react with the double bonds of acrylamide to form polythioether in the presence of amine. The hydrophobicity of the surfactant could be effectively adjusted by the chain length of the alkyl amine and thus this polymer could serve as a promising surfactant for oil-in-oil emulsion. Notably, the emulsion types could be switched by changing the chain length of the alkyl amine. In addition, the effects of surfactant loading, volume ratio of oil phases, oil types on the size and stability of oil-in-oil emulsions were further investigated. It was demonstrated that the oil-in-oil emulsion stabilized by poly(amide-thioether)s kept stable after more than five months. Besides, we preliminarily explored the application of the oil-in-oil emulsion to prepare closed cell foam and porous particles via photo-initiated thiol-ene polymerization. It is believed that this super-stable oil-in-oil emulsion could offer more possibilities for highly potential water-sensitive systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...