Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 324: 117780, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38278377

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang Luohanguo Qingfei granules (LQG) is a Chinese patent medicine, clinically used to treat flu-like symptoms including cough with yellow phlegm, impeded phlegm, dry throat and tongue. However, the protective activity of LQG against influenza infection is indeterminate. AIM OF THE STUDY: This study is to investigate the therapeutic effect of LQG on influenza infection and elucidate its underlying mechanism. MATERIALS AND METHODS: In vivo: A viral susceptible mouse model induced by restraint stress was established to investigate LQG's beneficial effects on influenza susceptibility. MAVS knockout (Mavs-/-) mice were used to verify the potential mechanism of LQG. In vitro: Corticosteroid (CORT)-treated A549 cells were employed to identify the active ingredients in LQG. Mice morbidity and mortality were monitored daily for 21 days. Histopathologic changes and inflammatory cytokines in lung tissues were examined by H&E staining and ELISA. RNA-seq was used to explore the signaling pathway influenced by LQG and further confirmed by qPCR. Immunoblotting and immunohistochemistry (IHC) were used to determine the protein levels. CO-IP and DARTS were applied to detect protein-protein interaction and compound-protein interaction, respectively. RESULTS: LQG effectively attenuated the susceptibility of restrained mice to H1N1 infection. LQG significantly boosted the production of IFN-ß transduced by mitochondrial antiviral-signaling protein (MAVS), while MAVS deficiency abrogated its protective effects on restrained mice infected with H1N1. Moreover, in vitro studies further revealed that mogroside Ⅱ B, amygdalin, and luteolin are potentially active components of LQG. CONCLUSION: These results suggested that LQG inhibited the mitofusin 2 (Mfn2)-mediated ubiquitination of MAVS by impeding the E3 ligase synoviolin 1 (SYVN1) recruitment, thereby enhancing IFN-ß antiviral response. Overall, our work elaborates a potential regimen for influenza treatment through reduction of stress-induced susceptibility.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Interferon Tipo I , Animais , Camundongos , Humanos , Interferon Tipo I/farmacologia , Interferon Tipo I/uso terapêutico , Influenza Humana/tratamento farmacológico , Transdução de Sinais , Antivirais/farmacologia , Antivirais/uso terapêutico , Imunidade Inata
2.
Microbes Infect ; 26(1-2): 105244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37914020

RESUMO

OBJECTIVE: This study aimed to investigate the impact of Corydalis Saxicola Bunting Total Alkaloid (CSBTA) on Porphyromonas gingivalis internalization within macrophages and explore the potential role of Toll-Like Receptor 2 (TLR2) in this process. METHODS: We established a P. gingivalis internalization model in macrophages by treating P. gingivalis-infected macrophages (MOI=100:1) with 200 µg/mL metronidazole and 300 µg/mL gentamicin for 1 h. Subsequently, the model was exposed to CSBTA at concentrations of 0.02 g/L or 1 µg/mL Pam3CSK4. After a 6 h treatment, cell lysis was performed with sterile water to quantify bacterial colonies. The mRNA expressions of TLR2 and interleukin-8 (IL-8) in macrophages were analyzed using RT-qPCR, while their protein levels were assessed via Western blot and ELISA respectively. RESULTS: P. gingivalis could internalize into macrophages and enhance the expression of TLR2 and IL-8. Activation of TLR2 by Pam3CSK4 contributed to P. gingivalis survival within macrophages and increased TLR2 and IL-8 expression. Conversely, 0.02 g/L CSBTA effectively cleared intracellular P. gingivalis, achieving a 90 % clearance rate after 6 h. Moreover, it downregulated the expression of TLR2 and IL-8 induced by P. gingivalis. However, the inhibitory effect of CSBTA on the internalized P. gingivalis model was attenuated by Pam3CSK4. CONCLUSION: CSBTA exhibited the ability to reduce the presence of live intracellular P. gingivalis and lower IL-8 expression in macrophages, possibly by modulating TLR2 activity.


Assuntos
Alcaloides , Corydalis , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Porphyromonas gingivalis/metabolismo , Corydalis/metabolismo , Alcaloides/metabolismo , Alcaloides/farmacologia , Macrófagos/microbiologia
3.
Toxicol Res (Camb) ; 12(2): 282-295, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37125334

RESUMO

Background: Although many studies have shown that herbs containing aristolochic acids can treat various human diseases, AAΙ in particular has been implicated as a nephrotoxic agent. Methods and results: Here, we detail the nephrotoxic effect of AAΙ via an approach that integrated 1H NMR-based metabonomics and network pharmacology. Our findings revealed renal injury in mice after the administration of AAΙ. Metabolomic data confirmed significant differences among the renal metabolic profiles of control and model groups, with significant reductions in 12 differential metabolites relevant to 23 metabolic pathways. Among them, there were seven important metabolic pathways: arginine and proline metabolism; glycine, serine, and threonine metabolism; taurine and hypotaurine metabolism; ascorbate and aldehyde glycolate metabolism; pentose and glucosinolate interconversion; alanine, aspartate, and glutamate metabolism; and glyoxylate and dicarboxylic acid metabolism. Relevant genes, namely, nitric oxide synthase 1 (NOS1), pyrroline-5-carboxylate reductase 1 (PYCR1), nitric oxide synthase 3 (NOS3) and glutamic oxaloacetic transaminase 2 (GOT2), were highlighted via network pharmacology and molecular docking techniques. Quantitative real-time PCR findings revealed that AAI administration significantly downregulated GOT2 and NOS3 and significantly upregulated NOS1 and PYCR1 expression and thus influenced the metabolism of arginine and proline. Conclusion: This work provides a meaningful insight for the mechanism of AAΙ renal injury.

4.
J Pharm Biomed Anal ; 222: 115109, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36270097

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by persistent joint inflammation. The development of rheumatoid arthritis is directly correlated with the disturbance of gut microbiome and its metabolites. RA can be effectively treated with the Danggui Sini decoction (DSD), a Traditional Chinese medicine (TCM) prescription from the Treatise on Febrile Diseases. Further research is needed to clarify the precise mechanism of DSD in the treatment of RA. In this study, 1H NMR metabonomics and 16 S rRNA gene sequencing techniques were used to clarify the intervention of DSD on CIA-induced RA. The results of 1H NMR metabolomics of feces revealed that five metabolites (alanine, glucose, taurine, betaine, and xylose) were disturbed, which could be regarded as potential biomarkers of RA. The intestinal microbiome of RA rats had changed, according to the results of 16 S rRNA gene sequencing; eight microbes (g_norank_f_Eubacterium_coprostanoligenes_group, g_Ruminococcus_torques_group, g_Dubosiell, g_Lactobacillus, g_norank_f_Desulfovibrionaceae, g_Bacteroides, g_Oscillibacter, and g_Romboutsia) occurred significantly at the genus level, and DSD significantly impacted six of them (g_Dubosiell, g_Lactobacillus, g_norank_f_Eubacterium_coprostanoligenes_group, g_Ruminococcus_torques_grou, g_Bacteroides, and g_Romboutsia). Three of them (g_norank_f_Eubacterium_ coprostanoligenes_group, g_Romboutsia, and g_Lactobacillus) were regarded as key microbiomes for DSD to treat RA, and three common metabolic pathways (taurine and hypotaurine metabolism; alanine, aspartate, and glutamate metabolism; primary bile acid biosynthesis) were discovered based on the 1H NMR metabonomics and PICRUST2 prediction of 16 S rRNA gene sequencing. Six SCFAs in feces (acetic acid, butyric acid, propionic acid, caproic acid, isobutyric acid, and valeric acid) increased significantly in RA, according to the outcomes of targeting SCFAs, while five SCFAs (acetic acid, butyric acid, propionic acid, caproic acid, and valeric acid) had decreased significantly due to DSD treatment. In conclusion, our study indicated that DSD could regulate RA's metabolic disorder by affecting intestinal microbiome and its metabolites. It also establishes a framework for future research into exploiting gut microbes therapeutic to treat RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Ratos , Animais , RNA Ribossômico 16S/genética , Ácido Butírico , Genes de RNAr , Metabolômica/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Taurina , Alanina , Colágeno
5.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6730-6739, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38212033

RESUMO

This article analyzed the mechanism of Danggui Sini Decoction(DSD) in improving kidney injury caused by blood stasis syndrome(BSS) in rats. Firstly, 32 female SD rats were randomly divided into the following four groups: a normal group and a BSS group, both receiving an equal amount of distilled water by gavage; a normal+DSD group and a BSS+DSD group, both receiving 5.103 g·kg~(-1) DSD orally for a total of 14 days. Daily cold water bath was given to establish the BSS model, and on the 14th day, BSS rats were subcutaneously injected with 0.8 mg·kg~(-1) adrenaline. Normal rats were subjected to the water bath at 37 ℃ and injected with an equal volume of distilled water. After the experiment, 24-hour urine, serum, and kidney samples were collected for metabolomic analysis, biochemical measurements, and hematoxylin-eosin(HE) staining. The study then employed ~1H-NMR metabolomic technology to reveal the metabolic network regulated by DSD in improving BSS-induced kidney injury and used network pharmacology to preliminarily elucidate the key targets of the effectiveness of DSD. Pathological and biochemical analysis showed that DSD intervention significantly reduced inflammation and abnormal levels of blood creatinine, blood urea nitrogen, and urine protein in the kidneys. Metabolomic analysis indicated that DSD attenuated BSS-induced kidney injury primarily by regulating 10 differential metabolites and three major metabolic pathways(taurine and hypotaurine metabolism, citrate cycle, and acetaldehyde and dicarboxylic acid metabolism). Network pharmacology analysis suggested that the protective effect of DSD against BSS-induced kidney injury might be related to two key genes, ATP citrate lyase(ACLY) and nitric oxide synthase 2(NOS2), and two main metabolic pathways, i.e., arginine biosynthesis, and arginine and proline metabolism. This study, from the perspective of network regulation, provides initial insights and evidence into the mechanism of DSD in improving kidney injury induced by BSS, offering a basis for further investigation into the molecular mechanisms underlying its efficacy.


Assuntos
Medicamentos de Ervas Chinesas , Farmacologia em Rede , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Metabolômica , Rim , Arginina , Água
6.
Neurol Res ; 44(4): 331-341, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34763612

RESUMO

OBJECTIVES: Stroke is the third most common cause of death and also causes seizures and disability. Biomarkers are abnormal signal indicators at the biological level that are present before the organism is seriously affected and are more sensitive to early diagnosis than are traditional imaging methods. Early diagnosis of stroke can prevent the progression of the disease. However, there are currently no widely accepted biomarkers for stroke that have been applied clinically. METHODS: A serum metabonomics method based on ultra-high-performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (UPLC-Q-TOF/MS) was used to identify potential biomarkers and metabolic pathways of cerebral infarction. The receiver-operating characteristic (ROC) curve was used to verify the diagnostic and classification abilities of the biomarkers, and a support vector machine (SVM) model was developed for the prediction of cerebral infarction. RESULTS: Principal component analysis revealed a clear separation between the normal and cerebral infarction groups. A total of 13 potential serum biomarkers were identified, which were mainly involved in linoleic acid metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis; tyrosine metabolism; arachidonic acid metabolism; and fatty acid biosynthesis. The ROC curve analysis showed that the potential biomarkers had high specificity and sensitivity for the diagnosis of cerebral infarction. The SVM model had good diagnostic ability and could accurately distinguish the control group from the cerebral infarction group. DISCUSSION: The metabonomics approach may be a useful bioanalytical method for understanding the pathophysiology of cerebral infarction and may provide an experimental basis for the development of clinical biomarkers for stroke.


Assuntos
Infarto Cerebral/sangue , Infarto Cerebral/diagnóstico , Metaboloma , Idoso , Biomarcadores/sangue , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Máquina de Vetores de Suporte
7.
Pharm Biol ; 59(1): 1415-1424, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34689683

RESUMO

CONTEXT: Tadehaginoside, an active ingredient isolated from Tadehagi triquetrum (Linn.) Ohashi (Leguminosae), exhibited various biological activities. However, the pharmacokinetics and tissue distribution which affect tadehaginoside's therapeutic actions and application remain elusive. OBJECTIVE: To clarify the metabolism of tadehaginoside in vivo. MATERIALS AND METHODS: The pharmacokinetics and tissue distribution of tadehaginoside and its metabolite p-hydroxycinnamic acid (HYD) were investigated using LC-MS/MS. Pharmacokinetic parameters were determined in 10 Sprague-Dawley rats divided into two groups, the intravenous group (5 mg/kg) and the oral group (25 mg/kg). For the tissue-distribution study, 20 rats were intravenously given tadehaginoside (5 mg/kg) before the experiment (n = 4). Biological samples were collected before drug administration (control group) and after drug administration. RESULTS: The linearity, accuracy, precision, stability, recovery and matrix effect of the method were well-validated and the results satisfied the requirements of biological sample measurement. Treatment with tadehaginoside via intragastric and intravenous administration, the calculated Cmax in rats was 6.01 ± 2.14 ng/mL and 109.77 ± 4.29 ng/mL, and Tmax was 0.025 ± 0.08 h and 0.08 h, respectively. The results indicated that the quick absorption of tadehaginoside was observed following intravenous administration, and tadehaginoside in plasma of rats with intragastric administration showed relatively low concentration may be due to the formation of its metabolite. Tissue-distribution study indicated that kidney and spleen were the major distribution organs for tadehaginoside in rats and there was no long-term accumulation in most tissues. DISCUSSION AND CONCLUSION: These results could provide clues for exploring the bioactivity of tadehaginoside based on its pharmacokinetic characteristics.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ácidos Cumáricos/farmacocinética , Glucosídeos/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Ácidos Cumáricos/análise , Glucosídeos/análise , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Distribuição Tecidual
8.
J Pharm Biomed Anal ; 205: 114338, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34461490

RESUMO

As a traditional Chinese medicine (TCM), Millettia speciosa Champ (MSC), exerts a wide range of pharmacological activities. Our research group previously found that MSC has antidepressant effects, but the specific antidepressant mechanisms remain unclear. Therefore, in this study, urine metabolomics based on ultra-performance liquid chromatography/quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS) combined with pharmacodynamics was used to explore the pathogenesis of depression and the antidepressant effects of MSC. The results showed that MSC treatment could significantly improve chronic unpredictable mild stress (CUMS)-induced depression. Urine metabolic showed that the profiles of the CUMS model group were significantly separated from the control group, while the drug-treated groups were closer to the control group, especially the MSC group treated with a 14 g/kg dose of MSC. Furthermore, 9 metabolites, including glutaric acid, L-isoleucine, L-Dopa, sebacic acid, 3-methylhistidine, allantoin, caprylic acid, tryptophol, and 2-phenylethanol glucuronide, were identified as potential biomarkers of depression. Metabolic pathway analysis showed that these potential biomarkers were mainly involved in valine, leucine, and isoleucine biosynthesis, aminoacyl-tRNA biosynthesis, valine, leucine and isoleucine degradation, tyrosine metabolism, histidine metabolism, fatty acid biosynthesis, and pentose and glucuronate interconversions. Through Receiver operating characteristic (ROC) analysis and Pearson correlation analysis, the combination of L-isoleucine, sebacic acid, and allantoin, were further screened out as potential pharmacodynamic biomarkers associated with the efficacy of MSC. This study suggests that the integration of metabolomics with pharmacodynamics helps to further understand the pathogenesis of depression and provides novel insight into the efficacy of TCM.


Assuntos
Líquidos Corporais , Medicamentos de Ervas Chinesas , Millettia , Animais , Biomarcadores , Cromatografia Líquida de Alta Pressão , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Isoleucina , Metabolômica , Ratos
9.
Eur J Pharmacol ; 864: 172694, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563648

RESUMO

Ferulic acid (FA), a naturally derived phenolic compound, has antioxidant and antidepressant-like effects. It is still a challenge to study its mechanism due to the complexity of the pathophysiology of depression. In this study, ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used to perform metabolomics studies based on biochemical changes in differentiated rat pheochromocytoma (PC12) cells treated with corticosterone-induced neurological damage after FA treatment. A total of 31 metabolites were identified as potential biomarkers for corticosterone-induced PC12 cells injury. Among them, 24 metabolites were regulated after FA treatment. Pathway analysis revealed that these metabolites were mainly involved in the amino acid metabolism, energy metabolism and glycerophospholipid metabolism. In addition, based on the results of metabolomics, three cell signaling pathways related to glutamate were discovered. To further study the interactions between FA and major targets in three signaling pathways, a molecular docking method was employed. The results showed that FA had the strongest binding power with protein kinase B (AKT). Furthermore, the result of mRNA changes analyzed by quantitative real time RT-PCR indicated that AKT and protein kinase A (PKA) in the signaling pathway were up regulated after treatment with FA compared with model group. This study shows that strategies based on cell metabolomics associated with molecular docking and molecular biology is a helpful tool to elucidate the neuroprotective mechanism of FA.


Assuntos
Ácidos Cumáricos/farmacologia , Metabolômica , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Corticosterona/farmacologia , Simulação de Acoplamento Molecular , Células PC12 , Ratos
10.
Artigo em Inglês | MEDLINE | ID: mdl-30594827

RESUMO

Danggui-Sini Decoction (DSD) is one of the most widely used traditional Chinese medicine formulae (TCMF) for treating various diseases caused by cold coagulation and blood stasis due to its effect of nourishing blood to warm meridians in clinical use. However, studies of the mechanism of how it dispels blood stasis and its compatible regularity are challenging because of the complex pathophysiology of blood stasis syndrome (BSS) and the complexity of DSD, with multiple active ingredients acting on different targets. Observing variations of endogenous metabolites in rats with BSS after administering DSD may further our understanding of the mechanism of BSS and the compatible regularity of DSD. In this study, to understand the pathogenesis of BSS and assess the compatibility effects of DSD, an ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry-based untargeted metabolomics approach was used. Serum metabolic profiles in rats with BSS that was induced by an ice water bath associated with subcutaneous injection of epinephrine hydrochloride were compared with the intervention groups which were administered with DSD or its compatibility. Using pattern recognition analysis, a clear separation between the BSS model and control group was observed; DSD and its compatibility intervention groups were clustered closer toward the control than the model group, which corroborates results of hemorheology studies. In addition, 20 metabolites were considered as potential biomarkers associated with the development of BSS. Nine metabolites were regulated by DSD in intervening blood stasis, they were considered to be correlated with the effect of nourishing blood to warm meridians. Additionally, the results suggested that the intervention effect of DSD on BSS may involve regulating four pathways, namely, arachidonic acid metabolism, glycerophospholipid metabolism, bile acid biosynthesis, and pyruvate metabolism. Moreover, each functional unit (monarch, minister, and assistant) in DSD regulates different metabolites and metabolic pathways to achieve different effects on dispelling blood stasis; however, their intervention efficacies are inferior to the holistic formula, which may be due to the synergism of the bioactive ingredients in seven herbs of DSD. This study demonstrated that metabolomics is a powerful tool for evaluating the efficacy and compatibility effects of traditional Chinese medicine (TCM).


Assuntos
Viscosidade Sanguínea/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Animais , Biomarcadores/sangue , Medicamentos de Ervas Chinesas/administração & dosagem , Feminino , Medicina Tradicional Chinesa , Redes e Vias Metabólicas , Ratos , Ratos Sprague-Dawley
11.
J Pharm Biomed Anal ; 159: 252-261, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-29990893

RESUMO

Liver fibrosis is a common consequence of chronic liver diseases resulting from multiple etiologies. Furthermore, prolonged unresolved liver fibrosis may gradually progress to cirrhosis, and eventually evolve into hepatocellular carcinoma (HCC). Corydalis saxicola Bunting (CS), a type of traditional Chinese folk medicine, has been reported to have hepatoprotective effects on the liver. However, the exact mechanism of how it cures liver fibrosis requires further elucidation. In this work, an integrated approach combining proton nuclear magnetic resonance (1H-NMR)-based metabonomics and network pharmacology was adopted to elucidate the anti-fibrosis mechanism of CS. Metabonomic study of serum biochemical changes by carbon tetrachloride (CCl4)-induced liver fibrosis in rats after CS treatment were performed using 1H-NMR analysis. Metabolic profiling by means of partial least squares-discriminate analysis (PLS-DA) indicated that the metabolic perturbation caused by CCl4 was reduced after CS treatment. As a result, lipids, leucine, alanine, acetate, O-acetyl-glycoprotein and creatine were significantly restored after CS treatment, which regulated valine, leucine and isoleucine metabolism; arginine and proline metabolism; lipid metabolism and pyruvate metabolism. Additionally, 157 potential targets of CS and 265 targets of liver fibrosis were identified by means of network pharmacology. Subsequently, 5 target proteins, which are the intersection of potential CS targets and liver fibrosis targets, indicated that CS has potential anti-fibrosis effects through regulating alanine aminotransferase (ALT) activity, the farnesoid X receptor (FXR), cyclooxygenase-2 (COX-2), matrix metalloproteinase-1 (MMP-1) and angiotensinogen. Chelerythrine and sanguinarine were the potential active compounds in CS for treating liver fibrosis through regulating ALT activity. This study is the first report to study the anti-fibrosis effects of CS on the basis of combining a metabonomics and network pharmacology approaches, and it may be a potentially powerful tool to study the efficacy and mechanisms of traditional Chinese folk medicines.


Assuntos
Tetracloreto de Carbono/toxicidade , Corydalis , Cirrose Hepática/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Extratos Vegetais/uso terapêutico , Animais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/prevenção & controle , Masculino , Extratos Vegetais/isolamento & purificação , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
12.
J Pharm Biomed Anal ; 140: 199-209, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28363136

RESUMO

Chronic liver injury has been shown to cause liver fibrosis due to the sustained pathophysiological wound healing response of the liver, and eventually progresses to cirrhosis. The total alkaloids of Corydalis saxicola Bunting (TACS), a collection of important bioactive ingredients derived from the traditional Chinese folk medicine Corydalis saxicola Bunting (CS), have been reported to have protective effects on the liver. However, the underlying molecular mechanisms need further elucidation. In this study, the urinary metabonomics and the biochemical changes in rats with carbon tetrachloride (CCl4)-induced chronic liver injury due to treatment TACS or administration of the positive control drug-bifendate were studied via proton nuclear magnetic resonance (1H NMR) analysis. Partial least squares-discriminate analysis (PLS-DA) suggested that metabolic perturbation caused by CCl4 damage was recovered with TACS and bifendate treatment. A total of seven metabolites including 2-oxoglutarate, citrate, dimethylamine, taurine, phenylacetylglycine, creatinine and hippurate were considered as potential biomarkers involved in the development of CCl4-induced chronic liver injury. According to pathway analysis using identified metabolites and correlation network construction, the tricarboxylic acid (TCA) cycle, gut microbiota metabolism and taurine and hypotaurine metabolism were recognized as the most affected metabolic pathways associated with CCl4 chronic hepatotoxicity. Notably, the changes in 2-oxoglutarate, citrate, taurine and hippurate during the process of CCl4-induced chronic liver injury were significantly restored by TACS treatment, which suggested that TACS synergistically mediated the regulation of multiple metabolic pathways including the TCA cycle, gut microbiota metabolism and taurine and hypotaurine metabolism. This study could bring valuable insight to evaluating the efficacy of TACS intervention therapy, help deepen the understanding of the hepatoprotective mechanisms of TACS and enable optimal diagnosis of chronic liver injury.


Assuntos
Corydalis , Metabolômica , Alcaloides , Animais , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Fígado , Ratos , Ratos Sprague-Dawley
13.
J Pharm Biomed Anal ; 129: 70-79, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27399344

RESUMO

Corydalis saxicola Bunting (CS), a traditional Chinese folk medicine, has been effectively used for treating liver disease in Zhuang nationality in South China. However, the exact hepatoprotective mechanism of CS was still looking forward to further elucidation by far. In present work, metabonomic study of biochemical changes in the serum of carbon tetrachloride (CCl4)-induced acute liver injury rats after CS treatment were performed using proton nuclear magnetic resonance ((1)H-NMR) analysis. Metabolic profiling by means of principal components analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) indicated that the metabolic perturbation caused by CCl4 was reduced by CS treatment. A total of 9 metabolites including isoleucine (1), lactate (2), alanine (3), glutamine (4), acetone (5), succinate (6), phosphocholine (7), d-glucose (8) and glycerol (9) were considered as potential biomarkers involved in the development of CCl4-induced acute liver injury. According to pathway analysis by metabolites identified and correlation network construction by Pearson's correlation coefficency matrix, alanine, aspartate and glutamate metabolism and glycerolipid metabolism were recognized as the most influenced metabolic pathways associated with CCl4 injury. As a result, notably, deviations of metabolites 1, 3, 4, 7 and 9 in the process of CCl4-induced acute liver injury were improved by CS treatment, which suggested that CS mediated synergistically abnormalities of the metabolic pathways, composed of alanine, aspartate and glutamate metabolism and glycerolipid metabolism. In this study, it was the first report to investigate the hepatoprotective effect of the CS based on metabonomics strategy, which may be a potentially powerful tool to interpret the action mechanism of traditional Chinese folk medicines.


Assuntos
Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Corydalis , Metabolômica/métodos , Extratos Vegetais/uso terapêutico , Animais , Espectroscopia de Ressonância Magnética/métodos , Masculino , Extratos Vegetais/isolamento & purificação , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/uso terapêutico , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
14.
Zhong Yao Cai ; 39(1): 70-3, 2016 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-30079706

RESUMO

Objective: To investigate the chemical constituents changes of Citrus reticulata pericarp before and after processing with vinegar,and to provide scientific basis for the study of active components in Citrus reticulata pericarp. Methods: Citrus reticulata pericarp was processed with vinegar according to the Zhongyao Paozhixue Cidian. The extracts of unprocessed and processed Citrus reticulata pericarp were detected by HPLC. Partial least squares-discriminate analysis( PLS-DA) was employed to reveal the discrimination between different samples. Results: 15 chemical constituents had significant changes in Citrus reticulata pericarp before and after processing with vinegar. Two components increased significantly after processing with vinegar were characterized as narirutin and hesperidin respectively. Conclusion: The chemical constituents in Citrus reticulata pericarp are found to be changed after processing with vinegar, two components with significant increasing indicate the basis of the variation of bioactivity in vinegar-processed Citrus reticulata pericarp, which provides evidence to interpret its clinical usage.


Assuntos
Citrus , Ácido Acético , Cromatografia Líquida de Alta Pressão , Hesperidina , Análise dos Mínimos Quadrados
15.
Zhongguo Zhong Yao Za Zhi ; 40(20): 4088-93, 2015 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-27062832

RESUMO

To study the anti-coagulant effect and influence of danggui Sini decoction (DSD) on rat's plasma endogenous metabolites by animal experiment and ¹H-NMR based metabolomics method. After intragastric administration of Danggui Sini Decoction for 7 days, Plasma thrombin time (TT) was measured. Rat plasma metabolic fingerprint in two groups was analyzed using ¹H-NMR, based on which the principal component analysis( PCA) and orthogonal partial least-squares discriminant analysis(OPLS-DA) models for metabonomic analysis. Potential biomarkers were screened by using variable importance in the projection (VIP) and T test. DSD could prolong TT of the rat significantly (P < 0.05). Compared with control group, six kinds of endogenous metabolites in DSD group change significantly (P < 0.05), among which isobutyrate, carnitine and phenylalanine content had an upward trend (P < 0.01) and lysine, Histidine and cholesterol content had a downward trend (P < 0.05). It is likely that carnitine, phenylalanine, Histidine and cholesterol are the potential metabolic markers in the anti-coagulant process and DSD affects the platelet aggregation and the expression of tissue factor and fiber protease by regulating the energy, amino acid and lipid metabolism.


Assuntos
Anticoagulantes/química , Coagulação Sanguínea/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Feminino , Masculino , Ratos
16.
J Food Drug Anal ; 23(1): 40-48, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28911444

RESUMO

Camellia chrysantha (Hu) Tuyama (CCT), an ornamental plant possessing antioxidant activity, has been infused as tea and drank for its health benefits. The antioxidant components in CCT, however, had not been clearly characterized. To quickly identify the antioxidant constituents of CCT, a composition-activity relationship strategy based on ultra high-pressure liquid chromatography coupled with linear ion trap hybrid orbitrap mass spectrometry and orthogonal partial least-squares method has been applied. As a result, 16 variables were found to make significant contributions to the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Six of them were identified as catechin (1), epicatechin (5), vitexin (8), isovitexin (10), quercetin-7-O-ß-D-glucopyranoside (12) and kaempferol (16). The strength of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity was found to be 12 > 1 > 5 > 16 > 8 > 10 by validation test. Meanwhile, a liquid chromatography-electrospray ionization-mass spectrometry method was established for quantitative determination of six marker compounds in CCT samples from different preparations. The validation of the method, including linearity, sensitivity (limitation of detection and limitation of quantification), repeatability, precision, stability, and recoveries, was carried out and demonstrated to meet the requirements of quantitative analysis. This is the first report on the comprehensive characterization and determination of chemical constituents in CCT by ultra high-pressure liquid chromatography coupled with linear ion trap hybrid orbitrap mass spectrometry. The results indicate that the composition-activity relationship approach may be a useful method for the discovery of active constituents in natural plants and the quality control of medicinal herbs.

17.
Mol Biosyst ; 10(3): 549-61, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24398477

RESUMO

Chaihu-Shu-Gan-San (CSGS), a traditional Chinese medicine formula, has been effectively used for the treatment of depression. However, studies of its anti-depressive mechanism are challenging, due to the complex pathophysiology of depression, and complexity of CSGS with multiple constituents acting on different receptors. In the present work, metabolomic studies of biochemical changes in the hippocampus and serum of chronic variable stress (CVS)-induced depression rats after treatment with CSGS were performed using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Partial least squares-discriminate analysis indicated that the metabolic perturbation induced by CVS was reduced by treatment with CSGS. A total of twenty-six metabolites (16 from the hippocampus and 10 from serum) were considered as potential biomarkers involved in the development of depression. Among them, 11 were first reported to have potential relevance in the pathogenesis of depression, and 25 may correlate to the regulation of CSGS treatment on depression. The results combined with a previous study indicated that CSGS mediated synergistically abnormalities of the metabolic network, composed of energy metabolism, synthesis of neurotransmitters, tryptophan, phospholipids, fatty acid and bile acid metabolism, bone loss and liver detoxification, which may be helpful for understanding its mechanism of action. Furthermore, the extracellular signal-regulated kinase (ERK) signal pathway, involved in the neuronal protective mechanism of depression related to energy metabolism, was investigated by western blot analysis. The results showed that CSGS reversed disruptions of BDNF, ERK1/2 and pERK1/2 in CVS rats, which provides the first evidence that the ERK signal system may be one of the targets related to the antidepressant action of CSGS.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma , Metabolômica , Extratos Vegetais/farmacologia , Estresse Fisiológico , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Sistema de Sinalização das MAP Quinases , Masculino , Extratos Vegetais/administração & dosagem , Mapas de Interação de Proteínas , Ratos
18.
Metabolites ; 3(4): 867-80, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24958255

RESUMO

Chaihu-Shu-Gan-San (CSGS), a traditional Chinese medicine (TCM) formula containing seven herbal medicines, has been used in the clinical treatment of gastritis, peptic ulcer, irritable bowel syndrome and depression in China. In order to explore the interaction between naringin and other constituents in CSGS, the pharmacokinetic difference of naringin in rats after oral administration of CSGS aqueous extract and naringin alone was investigated. The pharmacokinetic parameters of naringin in rats were achieved by quantification of its aglycone, naringenin by LC-MS/MS method. The double peaks phenomenon was observed in both serum profiles of rats after orally administered CSGS aqueous extract and naringin alone. However, the T1/2b was significantly decreased in rats given CSGS aqueous extract compared with naringin alone, and the mean residence time (MRT) and the area under the serum concentration-time curve (AUC0-τ) were higher than those of naringin, which indicated that naringin in CSGS had higher bioavailability, longer term efficacy and somewhat faster metabolism and excretion than those of naringin. The results suggested that certain ingredients co-exist in CSGS could influence pharmacokinetic behavior of naringin. This also provides a reference for human studies.

19.
J Pharm Biomed Anal ; 55(3): 533-9, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21398066

RESUMO

Chaihu-Shu-Gan-San (CSGS), a traditional Chinese medicine (TCM) formula, has been effectively used for the treatment of depression in clinic. However, studies of its anti-depressive mechanism are challenging, accounted for the complex pathophysiology of depression, and complexity of CSGS with multiple constituents acting on different metabolic pathways. The variations of endogenous metabolites in rat model of depression after administration of CSGS may offer deeper insights into the anti-depressive effect and mechanism of CSGS. In this study, metabonomics based on ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used to profile the metabolic fingerprints of urine obtained from chronic variable stress (CVS)-induced depression model in rats with and without CSGS treatment. Through partial least squares-discriminate analysis, it was observed that metabolic perturbations induced by chronic variable stress were restored in a time-dependent pattern after treatment with CSGS. Metabolites with significant changes induced by CVS, including 3-O-methyldopa (1), pantothenic acid (2), kynurenic acid (3), xanthurenic acid (4), 2,8-dihydroxyquinoline glucuronide (5), 5-hydroxy-6-methoxyindole glucurnoide (8), l-phenylalanyl-l-hydroxyproline (9), indole-3-carboxylic acid (10), proline (11), and the unidentified metabolites (6, 2.11min_m/z 217.0940; 7, 2.11min_m/z 144.0799), were characterized as potential biomarkers involved in the pathogenesis of depression. The derivations of all those biomarkers can be regulated by CSGS treatment except indole-3-carboxylic acid (10), which suggested that the therapeutic effect of CSGS on depression may involve in regulating the dysfunctions of energy metabolism, tryptophan metabolism, bone loss and liver detoxification. This study indicated that the rapid and noninvasive urinary metabonomics approach may be a powerful tool to study the efficacy and mechanism of complex TCM prescriptions.


Assuntos
Antidepressivos/uso terapêutico , Biomarcadores/urina , Depressão/urina , Metabolômica/métodos , Extratos Vegetais/uso terapêutico , Estresse Psicológico/urina , Animais , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Doença Crônica , Depressão/tratamento farmacológico , Depressão/etiologia , Modelos Animais de Doenças , Masculino , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Ratos , Ratos Wistar , Estresse Psicológico/complicações
20.
J Pharm Biomed Anal ; 53(3): 454-61, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20580508

RESUMO

Chaihu-Shu-Gan-San (CSGS), a traditional Chinese medicine (TCM) formula containing seven herbal medicines, has been used in treatment of gastritis, peptic ulcer, irritable bowel syndrome and depression clinically. However, the chemical constituents in CSGS had not been studied so far. To quickly identify the chemical constituents of CSGS and to understand the chemical profiles related to antioxidant activity of CSGS, liquid chromatography coupled with electrospray ionization hybrid linear trap quadrupole orbitrap (LC-LTQ-Orbitrap) mass spectrometry has been applied for online identification of chemical constituents in complex system, meanwhile, antioxidant profile of CSGS was investigated by the fraction collecting and microplate reading system. As a result, 33 chemical constituents in CSGS were identified. Among them, 13 components could be detected both in positive and in negative ion modes, 20 constituents were determined only in positive ion mode and 2 components were only detected in negative ion mode. Meanwhile, the potential antioxidant profile of CSGS was also characterized by combination of 96-well plate collection of elutes from HPLC analysis and microplate spectrophotometer, in which the scavenging activities of free radical produced by DPPH of each fraction could be directly investigated by the analysis of microplate reader. This study quickly screened the contribution of CSGS fractions to the antioxidant activity and online identified the corresponding active constituents. The results indicated that the combination of LC-MS(n) and 96-well plate assay system established in this paper would be a useful strategy for correlating the chemical profile of TCMs with their bioactivities without isolation and purification.


Assuntos
Antioxidantes/análise , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Compostos de Bifenilo/química , Picratos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...