Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33453283

RESUMO

Androglobin (ADGB) represents the latest addition to the globin superfamily in metazoans. The chimeric protein comprises a calpain domain and a unique circularly permutated globin domain. ADGB expression levels are most abundant in mammalian testis, but its cell-type-specific expression, regulation, and function have remained unexplored. Analyzing bulk and single-cell mRNA-Seq data from mammalian tissues, we found that-in addition to the testes-ADGB is prominently expressed in the female reproductive tract, lungs, and brain, specifically being associated with cell types forming motile cilia. Correlation analysis suggested coregulation of ADGB with FOXJ1, a crucial transcription factor of ciliogenesis. Investigating the transcriptional regulation of the ADGB gene, we characterized its promoter using epigenomic datasets, exogenous promoter-dependent luciferase assays, and CRISPR/dCas9-VPR-mediated activation approaches. Reporter gene assays revealed that FOXJ1 indeed substantially enhanced luciferase activity driven by the ADGB promoter. ChIP assays confirmed binding of FOXJ1 to the endogenous ADGB promoter region. We dissected the minimal sequence required for FOXJ1-dependent regulation and fine mapped the FOXJ1 binding site to two evolutionarily conserved regions within the ADGB promoter. FOXJ1 overexpression significantly increased endogenous ADGB mRNA levels in HEK293 and MCF-7 cells. Similar results were observed upon RFX2 overexpression, another key transcription factor in ciliogenesis. The complex transcriptional regulation of the ADGB locus was illustrated by identifying a distal enhancer, responsible for synergistic regulation by RFX2 and FOXJ1. Finally, cell culture studies indicated an ADGB-dependent increase in the number of ciliated cells upon overexpression of the full-length protein, confirming a ciliogenesis-associated role of ADGB in mammals.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Cílios/genética , Fatores de Transcrição Forkhead/genética , Globinas/genética , Fatores de Transcrição de Fator Regulador X/genética , Transcriptoma , Animais , Sítios de Ligação , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Bovinos , Cílios/metabolismo , Elementos Facilitadores Genéticos , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Globinas/metabolismo , Células HEK293 , Células HeLa , Humanos , Pulmão/citologia , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Células MCF-7 , Masculino , Anotação de Sequência Molecular , Ovário/citologia , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição de Fator Regulador X/metabolismo , Análise de Sequência de RNA , Testículo/citologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
2.
J Biol Chem ; 293(21): 8065-8076, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29636414

RESUMO

During neuronal development, the microtubule-associated protein tau becomes enriched in the axon, where it remains concentrated in the healthy brain. In tauopathies such as Alzheimer's disease, tau redistributes from the axon to the somatodendritic compartment. However, the cellular mechanism that regulates tau's localization remains unclear. We report here that tau interacts with the Ca2+-regulated plasma membrane-binding protein annexin A2 (AnxA2) via tau's extreme N terminus encoded by the first exon (E1). Bioinformatics analysis identified two conserved eight-amino-acids-long motifs within E1 in mammals. Using a heterologous yeast system, we found that disease-related mutations and pseudophosphorylation of Tyr-18, located within E1 but outside of the two conserved regions, do not influence tau's interaction with AnxA2. We further observed that tau interacts with the core domain of AnxA2 in a Ca2+-induced open conformation and interacts also with AnxA6. Moreover, lack of E1 moderately increased tau's association rate to microtubules, consistent with the supposition that the presence of the tau-annexin interaction reduces the availability of tau to interact with microtubules. Of note, intracellular competition through overexpression of E1-containing constructs reduced tau's axonal enrichment in primary neurons. Our results suggest that the E1-mediated tau-annexin interaction contributes to the enrichment of tau in the axon and is involved in its redistribution in pathological conditions.


Assuntos
Anexina A2/metabolismo , Anexina A6/metabolismo , Axônios/metabolismo , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Animais , Anexina A2/genética , Anexina A6/genética , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células PC12 , Fosforilação , Ligação Proteica , Ratos , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...