Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240424

RESUMO

Cry11 proteins are toxic to Aedes aegypti, the vector of dengue, chikungunya, and Zika viruses. Cry11Aa and Cry11Bb are protoxins, which when activated present their active-toxin form in two fragments between 30 and 35 kDa respectively. Previous studies conducted with Cry11Aa and Cry11Bb genes using DNA shuffling generated variant 8, which presented a deletion in the first 73 amino acids and one at position 572 and 9 substitutions including L553F and L556W. In this study, variant 8 mutants were constructed using site-directed mutagenesis, resulting in conversion of phenylalanine (F) and tryptophan (W) to leucine (L) at positions 553 and 556, respectively, producing the mutants 8F553L, 8W556L, and 8F553L/8W556L. Additionally, two mutants, A92D and C157R, derived from Cry11Bb were also generated. The proteins were expressed in the non-crystal strain BMB171 of Bacillus thuringiensis and subjected to median-lethal concentration (LC50) tests on first-instar larvae of A. aegypti. LC50 analysis showed that the 8F553L, 8W556L, 8F553L/8W556L, and C157R variants lost their toxic activity (>500 ng·mL-1), whereas the A92D protein presented a loss of toxicity of 11.4 times that of Cry11Bb. Cytotoxicity assays performed using variant 8, 8W556L and the controls Cry11Aa, Cry11Bb, and Cry-negative BMB171 on the colorectal cancer cell line SW480 reported 30-50% of cellular viability except for BMB171. Molecular dynamic simulations performed to identify whether the mutations at positions 553 and 556 were related to the stability and rigidity of the functional tertiary structure (domain III) of the Cry11Aa protein and variant 8 showed the importance of these mutations in specific regions for the toxic activity of Cry11 against A. aegypti. This generates pertinent knowledge for the design of Cry11 proteins and their biotechnological applications in vector-borne disease control and cancer cell lines.


Assuntos
Aedes , Bacillus thuringiensis , Infecção por Zika virus , Zika virus , Animais , Endotoxinas/genética , Endotoxinas/toxicidade , Endotoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/metabolismo , Mosquitos Vetores , Aedes/genética , Aedes/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Zika virus/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Larva/genética , Larva/metabolismo
2.
Molecules ; 27(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364090

RESUMO

Parasporin 2 has cytotoxic effects against numerous colon cancer cell lines, making it a viable alternative to traditional treatments. However, its mechanism of action and receptors remain unknown. In this study, site-directed mutagenesis was used to obtain PS2Aa1 mutants with variation in domain I at positions 256 and 257. Variants 015, 002, 3-3, 3-35, and 3-45 presented G256A, G256E, G257A, G257V, and G257E substitutions, respectively. Cytotoxicity tests were performed for the cell viability of cell lines SW480, SW620, and CaCo-2. Mutants 3-3, 3-35, and 3-45 efficiently killed the cell lines. It was found that the activated forms of caspase-3 and PARP were in higher abundance as well as increased production of γH2AX when 3-35 was used to treat CaCo-2 and SW480. To assess possible membrane-binding receptors involved in the interaction, an APN receptor blocking assay showed reduced activity of some parasporins. Hence, we performed molecular docking and molecular dynamics simulations to analyze the stability of possible interactions and identify the residues that could be involved in the protein-protein interaction of PS2Aa1 and APN. We found that residues 256 and 257 facilitate the interaction. Parasporin 3-35 is promising because it has higher cytotoxicity than PS2Aa1.


Assuntos
Antineoplásicos , Bacillus thuringiensis , Neoplasias Colorretais , Humanos , Bacillus thuringiensis/metabolismo , Simulação de Acoplamento Molecular , Células CACO-2 , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Linhagem Celular Tumoral , Apoptose
3.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946558

RESUMO

Bacillus thuringiensis (Bt) is a bacterium capable of producing Cry toxins, which are recognized for their bio-controlling actions against insects. However, a few Bt strains encode proteins lacking insecticidal activity but showing cytotoxic activity against different cancer cell lines and low or no cytotoxicity toward normal human cells. A subset of Cry anticancer proteins, termed parasporins (PSs), has recently arisen as a potential alternative for cancer treatment. However, the molecular receptors that allow the binding of PSs to cells and their cytotoxic mechanisms of action have not been well established. Nonetheless, their selective cytotoxic activity against different types of cancer cell lines places PSs as a promising alternative treatment modality. In this review, we provide an overview of the classification, structures, mechanisms of action, and insights obtained from genetic modification approaches for PS proteins.


Assuntos
Antineoplásicos/farmacologia , Bacillus thuringiensis/genética , Endotoxinas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Endotoxinas/química , Endotoxinas/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...