Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 310(6): F560-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26739893

RESUMO

Cisplatin, a chemotherapeutic used for the treatment of solid cancers, has nephrotoxic side effects leading to acute kidney injury (AKI). Cisplatin cannot be given to patients that have comorbidities that predispose them to an increased risk for AKI. Even without these comorbidities, 30% of patients administered cisplatin will develop kidney injury, requiring the oncologist to withhold or reduce the next dose, leading to a less effective therapeutic regimen. Although recovery can occur after one episode of cisplatin-induced AKI, longitudinal studies have indicated that multiple episodes of AKI lead to the development of chronic kidney disease, an irreversible disease with no current treatment. The standard mouse model of cisplatin-induced AKI consists of one high dose of cisplatin (>20 mg/kg) that is lethal to the animal 3 days later. This model does not accurately reflect the dosing regimen patients receive nor does it allow for the long-term study of kidney function and biology. We have developed a repeated dosing model whereby cisplatin is given once a week for 4 wk. Comparison of the repeated dosing model with the standard dosing model demonstrated that inflammatory cytokines and chemokines were induced in the repeated dosing model, but levels of cell death were lower in the repeated dosing model. The repeated dosing model had increased levels of fibrotic markers (fibronectin, transforming growth factor-ß, and α-smooth muscle actin) and interstitial fibrosis. These data indicate that the repeated dosing model can be used to study the AKI to chronic kidney disease progression as well as the mechanisms of this progression.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Modelos Animais de Doenças , Rim/efeitos dos fármacos , Nefroesclerose/induzido quimicamente , Animais , Antineoplásicos/administração & dosagem , Biomarcadores/metabolismo , Quimiocinas/metabolismo , Cisplatino/administração & dosagem , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibrose , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Masculino , Camundongos , Nefroesclerose/mortalidade
2.
Am J Physiol Renal Physiol ; 309(3): F204-15, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26041445

RESUMO

Glycosphingolipids (GSLs) play a role in insulin resistance and diabetes, but their role in diabetic nephropathy (DN) has received limited attention. We used 9- and 17-wk-old nondiabetic db/m and diabetic db/db mice to examine the role of GSLs in DN. Cerebrosides or monoglycosylated GSLs [hexosylceramides (HexCers); glucosyl- and galactosylceramides] and lactosylceramide (LacCers) were elevated in db/db mouse kidney cortices, specifically in glomeruli, and also in urine. In our recent paper (25), we observed that the kidneys exhibited glomerular hypertrophy and proximal tubular vacuolization and increased fibrosis markers at these time points. Mesangial cells contribute to hyperglycemia-induced glomerular hypertrophy in DN. Hyperglycemic culture conditions, similar to that present in diabetes, were sufficient to elevate mesangial cell HexCers and increase markers of fibrosis, extracellular matrix proteins, and cellular hypertrophy. Inhibition of glucosylceramide synthase or lowering glucose levels decreased markers of fibrosis and extracellular matrix proteins and reversed mesangial cell hypertrophy. Hyperglycemia increased phosphorylated (p)SMAD3 and pAkt levels and reduced phosphatase and tensin homolog levels, which were reversed with glucosylceramide synthase inhibition. These data suggest that inhibition of glucosylceramide synthase reversed mesangial cell hypertrophy through decreased pAkt and pSmad3 and increased pathways responsible for protein degradation. Importantly, urinary GSL levels were higher in patients with DN compared with healthy control subjects, implicating a role for these lipids in human DN. Thus, hyperglycemia in type II diabetes leads to renal dysfunction at least in part by inducing accumulation of HexCers and LacCers in mesangial cells, resulting in fibrosis, extracellular matrix production, and hypertrophy.


Assuntos
Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Glicoesfingolipídeos/metabolismo , Rim/metabolismo , Células Mesangiais/patologia , Animais , Antígenos CD/metabolismo , Linhagem Celular , Proliferação de Células , Diabetes Mellitus Experimental/patologia , Humanos , Glomérulos Renais/patologia , Túbulos Renais Proximais/patologia , Lactosilceramidas/metabolismo , Células Mesangiais/ultraestrutura , Camundongos , Proteína Oncogênica v-akt/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo
3.
J Lipid Res ; 54(3): 794-805, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23160178

RESUMO

Sphingomyelin synthase (SMS) produces sphingomyelin while consuming ceramide (a negative regulator of cell proliferation) and forming diacylglycerol (DAG) (a mitogenic factor). Therefore, enhanced SMS activity could favor cell proliferation. To examine if dysregulated SMS contributes to leukemogenesis, we measured SMS activity in several leukemic cell lines and found that it is highly elevated in K562 chronic myelogenous leukemia (CML) cells. The increased SMS in K562 cells was caused by the presence of Bcr-abl, a hallmark of CML; stable expression of Bcr-abl elevated SMS activity in HL-60 cells while inhibition of the tyrosine kinase activity of Bcr-abl with Imatinib mesylate decreased SMS activity in K562 cells. The increased SMS activity was the result of up-regulation of the Sms1 isoform. Inhibition of SMS activity with D609 (a pharmacological SMS inhibitor) or down-regulation of SMS1 expression by siRNA selectively inhibited the proliferation of Bcr-abl-positive cells. The inhibition was associated with an increased production of ceramide and a decreased production of DAG, conditions that antagonize cell proliferation. A similar change in lipid profile was also observed upon pharmacological inhibition of Bcr-abl (K526 cells) and siRNA-mediated down-regulation of BCR-ABL (HL-60/Bcr-abl cells). These findings indicate that Sms1 is a downstream target of Bcr-abl, involved in sustaining cell proliferation of Bcr-abl-positive cells.


Assuntos
Genes abl/fisiologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Benzamidas , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular , Ceramidas/metabolismo , Diglicerídeos/metabolismo , Genes abl/genética , Células HL-60 , Humanos , Mesilato de Imatinib , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Norbornanos , Piperazinas , Pirimidinas , Tiocarbamatos , Tionas/farmacologia , Transferases (Outros Grupos de Fosfato Substituídos)/genética
4.
PLoS One ; 6(9): e23644, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980337

RESUMO

Sphingomyelin synthases (SMS1 and 2) represent a class of enzymes that transfer a phosphocholine moiety from phosphatidylcholine onto ceramide thus producing sphingomyelin and diacylglycerol (DAG). SMS1 localizes at the Golgi while SMS2 localizes both at the Golgi and the plasma membrane. Previous studies from our laboratory showed that modulation of SMS1 and, to a lesser extent, of SMS2 affected the formation of DAG at the Golgi apparatus. As a consequence, down-regulation of SMS1 and SMS2 reduced the localization of the DAG-binding protein, protein kinase D (PKD), to the Golgi. Since PKD recruitment to the Golgi has been implicated in cellular secretion through the trans golgi network (TGN), the effect of down-regulation of SMSs on TGN-to-plasma membrane trafficking was studied. Down regulation of either SMS1 or SMS2 significantly retarded trafficking of the reporter protein vesicular stomatitis virus G protein tagged with GFP (VSVG-GFP) from the TGN to the cell surface. Inhibition of SMSs also induced tubular protrusions from the trans Golgi network reminiscent of inhibited TGN membrane fission. Since a recent study demonstrated the requirement of PKD activity for insulin secretion in beta cells, we tested the function of SMS in this model. Inhibition of SMS significantly reduced insulin secretion in rat INS-1 cells. Taken together these results provide the first direct evidence that both enzymes (SMS1 and 2) are capable of regulating TGN-mediated protein trafficking and secretion, functions that are compatible with PKD being a down-stream target for SMSs in the Golgi.


Assuntos
Regulação Enzimológica da Expressão Gênica , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Transferases (Outros Grupos de Fosfato Substituídos)/fisiologia , Animais , Transporte Biológico , Linhagem Celular , Membrana Celular/metabolismo , Regulação para Baixo , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Insulina/metabolismo , Secreção de Insulina , Glicoproteínas de Membrana/metabolismo , Ratos , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Proteínas do Envelope Viral/metabolismo
5.
PLoS One ; 5(12): e15587, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21203393

RESUMO

The key host cellular pathway(s) necessary to control the infection caused by inhalation of the environmental fungal pathogen Cryptococcus neoformans are still largely unknown. Here we have identified that the sphingolipid pathway in neutrophils is required for them to exert their killing activity on the fungus. In particular, using both pharmacological and genetic approaches, we show that inhibition of sphingomyelin synthase (SMS) activity profoundly impairs the killing ability of neutrophils by preventing the extracellular release of an antifungal factor(s). We next found that inhibition of protein kinase D (PKD), which controls vesicular sorting and secretion and is regulated by diacylglycerol (DAG) produced by SMS, totally blocks the extracellular killing activity of neutrophils against C. neoformans. The expression of SMS genes, SMS activity and the levels of the lipids regulated by SMS (namely sphingomyelin (SM) and DAG) are up-regulated during neutrophil differentiation. Finally, tissue imaging of lungs infected with C. neoformans using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS), revealed that specific SM species are associated with neutrophil infiltration at the site of the infection. This study establishes a key role for SMS in the regulation of the killing activity of neutrophils against C. neoformans through a DAG-PKD dependent mechanism, and provides, for the first time, new insights into the protective role of host sphingolipids against a fungal infection.


Assuntos
Anti-Infecciosos/farmacologia , Cryptococcus neoformans/metabolismo , Neutrófilos/microbiologia , Transferases (Outros Grupos de Fosfato Substituídos)/fisiologia , Animais , Antifúngicos/farmacologia , Diferenciação Celular , Ceramidas/metabolismo , Diglicerídeos/metabolismo , Células HL-60 , Humanos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos CBA , Neutrófilos/metabolismo , Proteína Quinase C/antagonistas & inibidores , Esfingolipídeos/química
6.
Biochem J ; 414(1): 31-41, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18370930

RESUMO

SMS [SM (sphingomyelin) synthase] is a class of enzymes that produces SM by transferring a phosphocholine moiety on to ceramide. PC (phosphatidylcholine) is believed to be the phosphocholine donor of the reaction with consequent production of DAG (diacylglycerol), an important bioactive lipid. In the present study, by modulating SMS1 and SMS2 expression, the role of these enzymes on the elusive regulation of DAG was investigated. Because we found that modulation of SMS1 or SMS2 did not affect total levels of endogenous DAG in resting cells, whereas they produce DAG in vitro, the possibility that SMSs could modulate subcellular pools of DAG, once acute activation of the enzymes is triggered, was investigated. Stimulation of SM synthesis was induced by either treatment with short-chain ceramide analogues or by increasing endogenous ceramide at the plasma membrane, and a fluorescently labelled conventional C1 domain [from PKC (protein kinase C)] enhanced in its DAG binding activity was used to probe subcellular pools of DAG in the cell. With this approach, we found, using confocal microscopy and subcellular fractionation, that modulation of SMS1 and, to a lesser extent, SMS2 affected the formation of DAG at the Golgi apparatus. Similarly, down-regulation of SMS1 and SMS2 reduced the localization of the DAG-binding protein PKD (protein kinase D) to the Golgi. These results provide direct evidence that both enzymes are capable of regulating the formation of DAG in cells, that this pool of DAG is biologically active, and for the first time directly implicate SMS1 and SMS2 as regulators of DAG-binding proteins in the Golgi apparatus.


Assuntos
Diglicerídeos/biossíntese , Complexo de Golgi/enzimologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Transferases (Outros Grupos de Fosfato Substituídos)/fisiologia , Células Cultivadas , Diglicerídeos/metabolismo , Ativação Enzimática/fisiologia , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Ligação Proteica/fisiologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
7.
Clin Chim Acta ; 389(1-2): 19-24, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18083121

RESUMO

BACKGROUND: The immune system undergoes alterations in functions with aging which results in progressive deterioration in the ability to respond to infection. The importance of nutrients in regulating immune responses has widened attempts on interventions that improve immune functions with aging. L-carnitine serves as a vital factor in the mitochondrial transport of fatty acids, a process essential for fatty acid oxidation and energy release. L-carnitine is categorized as a conditionally essential nutrient factor and its concentrations are reported to be decreased with aging. METHODS: The immunomodulatory role of L-carnitine was assessed in aged rats after administration of L-carnitine (300 mg/kg body weight/day) for 7, 14 and 21 days by evaluating neutrophil functions, delayed-type hypersensitivity (DTH) responses and immunoglobulin concentrations. RESULTS: Aged animals exhibited decreased non-specific immune functions, delayed-type hypersensitivity responses and immunoglobulin concentrations compared to younger controls. Treatment with L-carnitine improved neutrophil functions, delayed-type hypersensitivity responses and the concentrations of immunoglobulins A and G in aged animals in a significant manner. However L-carnitine treatment did not have any impact on IgM concentration and type responses. CONCLUSIONS: This study demonstrated that aging is associated with a decline in immune functions and supplementing L-carnitine had a positive effect in improving immune responses in aged animals.


Assuntos
Envelhecimento/imunologia , Formação de Anticorpos , Carnitina/fisiologia , Imunidade Celular , Animais , Ratos , Ratos Wistar
8.
Exp Gerontol ; 40(8-9): 707-15, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16026958

RESUMO

Free radicals have been hypothesized to play an important role in ageing process. There exists an imbalance between free radical production and antioxidant defense mechanism, which may lead to cell death during ageing. Our study was designed to determine whether extract of Centella asiatica, an antioxidant, when administered orally (300 mg/kg body weight/day) for 60 days would prevent age-related changes in antioxidant defense system, lipid peroxidation (LPO) and protein carbonyl (PCO) content in rat brain regions such as cortex, hypothalamus, striatum, cerebellum and hippocampus. Aged rats elicited a significant decline in the antioxidant status and increased the LPO and PCO as compared to control rats in all five regions studied. The increase in LPO and PCO contents were (64%, 34%) in cortex, (86%, 30%) in cerebellum, (51%, 47%) in striatum, (77%, 27%) in hypothalamus and (58%, 45%) in hippocampus, respectively, in aged rats as compared to young rats. Supplementation of C. asiatica was effective in reducing brain regional LPO and PCO levels and in increasing the antioxidant status. Thus, C. asiatica by acting as a potent antioxidant exerted significant neuroprotective effect and proved efficacious in protecting rat brain against age related oxidative damage.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia , Encéfalo/metabolismo , Centella , Fitoterapia , Extratos Vegetais/farmacologia , Animais , Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Química Encefálica , Suplementos Nutricionais , Peroxidação de Lipídeos , Masculino , Modelos Animais , Extratos Vegetais/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Proteínas/metabolismo , Ratos , Ratos Wistar
9.
Arch Toxicol ; 79(3): 140-6, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15798887

RESUMO

The purpose of this study was to examine the effects of DL: -alpha-lipoic acid (LA) on arsenic (As) induced alteration of glutathione (GSH) level and of the activity of glutathione-related enzymes-glutathione peroxidase (GSH-Px), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH)-in rat brain regions (cortex, hypothalamus, striatum, cerebellum and hippocampus). Male Wistar rats of 150+/-10 g weight were divided into four groups: control and three experimental groups supplemented with arsenic (sodium arsenite) alone (100 ppm mixed in drinking water), lipoic acid alone (70 mg kg(-1) body weight), arsenic plus lipoic acid (100 ppm arsenic in drinking water plus 70 mg lipoic acid kg(-1) body weight). The arsenic content of brain regions was found to increase with the administration of sodium arsenite. Arsenic exposure elicited a significant decline in glutathione content and in the activity of related enzymes, with the greatest decreases seen in the cortex, striatum, and hippocampus, whereas there were no significant differences between control rats and the group treated with lipoic acid alone. Highly elevated content of the thiobarbituric acid-reactive substance malondialdehyde (MDA) in the brain regions of arsenic-exposed rats reflected extensive lipid peroxidation (LPO) processes. Simultaneous lipoic acid treatment was effective in reducing brain regional arsenic levels and lipid peroxidation and in increasing the glutathione content and the activity of its related enzymes. Lipoic acid, by acting as an alternative sulfhydryl nucleophile to glutathione, prevents its oxidation to glutathione disulfide in detoxifying reactions against reactive oxygen species and consequently increases the activity of glutathione-related enzymes.


Assuntos
Arsênio/toxicidade , Encéfalo/efeitos dos fármacos , Ácido Tióctico/farmacologia , Animais , Arsênio/análise , Encéfalo/enzimologia , Encéfalo/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Peroxidação de Lipídeos , Masculino , Substâncias Protetoras/farmacologia , Proteínas/análise , Ratos , Ratos Wistar
10.
Chem Biol Interact ; 148(1-2): 11-8, 2004 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15223352

RESUMO

The mitochondrial respiratory chain is a powerful source of reactive oxygen species (ROS), considered as the pathogenic agent of many diseases and aging. L-Carnitine (4-N-trimethylammonium-3-hydroxybutric acid) plays an important role in transport of fatty acid from cytoplasm to mitochondria for energy production. Previous studies in our laboratory reported L-carnitine as a free radical scavenger in aged rats. In the present study we focused the effect of L-carnitine on the activities of electron transport chain in young and aged rats. The activities of electron transport chain complexes were found to be significantly decreased in aged rats when compared to young control rats. Supplementation of carnitine to young and aged rats for 14 and 21 days improved the electron transport chain complexes levels in aged rats when compared with young rats in duration dependent manner. No significant changes were observed in young rats. Our result suggested that L-carnitine improved the activities of electron transport chain enzymes there by improving the energy status in aged rats.


Assuntos
Envelhecimento/fisiologia , Carnitina/fisiologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/fisiologia , Mitocôndrias Cardíacas/fisiologia , Músculo Esquelético/fisiologia , Animais , Carnitina/farmacologia , Bovinos , Relação Dose-Resposta a Droga , Complexo de Proteínas da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Feminino , Sequestradores de Radicais Livres/farmacologia , Coração/efeitos dos fármacos , Coração/fisiologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...