Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 126(3): 482-491, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34471258

RESUMO

BACKGROUND: Minimal residual disease (MRD) measurement is a cornerstone of contemporary acute lymphoblastic leukaemia (ALL) treatment. The presence of immunoglobulin (Ig) and T cell receptor (TCR) gene recombinations in leukaemic clones allows widespread use of patient-specific, DNA-based MRD assays. In contrast, paediatric solid tumour MRD remains experimental and has focussed on generic assays targeting tumour-specific messenger RNA, methylated DNA or microRNA. METHODS: We examined the feasibility of using whole-genome sequencing (WGS) data to design tumour-specific polymerase chain reaction (PCR)-based MRD tests (WGS-MRD) in 18 children with high-risk relapsed cancer, including ALL, high-risk neuroblastoma (HR-NB) and Ewing sarcoma (EWS) (n = 6 each). RESULTS: Sensitive WGS-MRD assays were generated for each patient and allowed quantitation of 1 tumour cell per 10-4 (0.01%)-10-5 (0.001%) mononuclear cells. In ALL, WGS-MRD and Ig/TCR-MRD were highly concordant. WGS-MRD assays also showed good concordance between quantitative PCR and droplet digital PCR formats. In serial clinical samples, WGS-MRD correlated with disease course. In solid tumours, WGS-MRD assays were more sensitive than RNA-MRD assays. CONCLUSIONS: WGS facilitated the development of patient-specific MRD tests in ALL, HR-NB and EWS with potential clinical utility in monitoring treatment response. WGS data could be used to design patient-specific MRD assays in a broad range of tumours.


Assuntos
Biomarcadores Tumorais/genética , Rearranjo Gênico , Neoplasia Residual/patologia , Neuroblastoma/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Sarcoma de Ewing/patologia , Sequenciamento Completo do Genoma/métodos , Adolescente , Neoplasias Ósseas/sangue , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Proteína Proto-Oncogênica N-Myc/genética , Neoplasia Residual/genética , Neuroblastoma/sangue , Neuroblastoma/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína Proto-Oncogênica c-fli-1/genética , Receptores de Antígenos de Linfócitos T/genética , Sarcoma de Ewing/sangue , Sarcoma de Ewing/genética , Regulador Transcricional ERG/genética
2.
Cancers (Basel) ; 11(6)2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31213005

RESUMO

: F-box/WD repeat-containing protein 5 (FBXW5) is a member of the FBXW subclass of F-box proteins. Despite its known function as a component of the Skp1-Cullin-F-box (SCF) ubiquitin ligase complex, the role of FBXW5 in gastric cancer tumorigenesis and metastasis has not been investigated. The present study investigates the role of FBXW5 in tumorigenesis and metastasis, as well as the regulation of key signaling pathways in gastric cancer; using in-vitro FBXW5 knockdown/overexpression cell line and in-vivo models. In-vitro knockdown of FBXW5 results in a decrease in cell proliferation and cell cycle progression, with a concomitant increase in cell apoptosis and caspase-3 activity. Furthermore, knockdown of FBXW5 also leads to a down regulation in cell migration and adhesion, characterized by a reduction in actin polymerization, focal adhesion turnover and traction forces. This study also delineates the mechanistic role of FBXW5 in oncogenic signaling as its inhibition down regulates RhoA-ROCK 1 (Rho-associated protein kinase 1) and focal adhesion kinase (FAK) signaling cascades. Overexpression of FBXW5 promotes in-vivo tumor growth, whereas its inhibition down regulates in-vivo tumor metastasis. When considered together, our study identifies the novel oncogenic role of FBXW5 in gastric cancer and draws further interest regarding its clinical utility as a potential therapeutic target.

3.
Sci Rep ; 8(1): 12248, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115935

RESUMO

Exportin-1 (XPO1) controls the nucleo-cytoplasmic trafficking of several key growth regulatory and tumor suppressor proteins. Nuclear export blockade through XPO1 inhibition is a target for therapeutic inhibition in many cancers. Studies have suggested XPO1 upregulation as an indicator of poor prognosis in gastric cancer. In the current study, we investigated the anti-tumor efficacy of selective inhibitors of nuclear export (SINE) compounds KPT-185, KTP-276 and clinical stage selinexor (KPT-330) in gastric cancer. XPO1 was found to be overexpressed in gastric cancer as compared to adjacent normal tissues and was correlated with poor survival outcomes. Among the 3 SINE compounds, in vitro targeting of XPO1 with selinexor resulted in greatest potency with significant anti-proliferative effects at nano molar concentrations. XPO1 inhibition by selinexor resulted in nuclear accumulation of p53, causing cell cycle arrest and apoptosis. Also, inhibition of XPO1 lead to the cytoplasmic retention of p21 and suppression of survivin. Orally administered selienxor caused significant inhibition of tumor growth in xenograft models of gastric cancer. Furthermore, combination of selinexor with irinotecan exhibited greater anti-tumor effect compared to individual treatment. Taken together, our study underscores the therapeutic utility of XPO1 targeting in gastric cancer and suggests the potential benefits of XPO1 inhibition in-combination with chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Hidrazinas/farmacologia , Neoplasias Gástricas/patologia , Triazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Adulto , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Lett ; 417: 152-160, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29306016

RESUMO

Accumulating evidence has implicated the aberrant regulation of histone deacetylases (HDACs) as a nexus for multiple cancer hallmarks and in mediating tumor adaptation and resistance to genotoxic chemotherapy, suggesting a rational pairing of HDAC inhibitors with DNA damaging chemotherapeutic agents in the treatment of human malignancies. Here we report that panobinostat (LBH589), a potent pan-HDAC inhibitor, effectively curbed the proliferation of non-small cell lung cancer (NSCLC) cell lines A549, Calu-1, H226, H460, H838 and SKMES-1 at IC50 concentrations between 4 and 31 nmol/L via pleiotropic mechanisms, including crosstalk with EGFR signal transduction cascades. Combination therapy with carboplatin elicited rapid tumor cell kill and effectively restrained anchorage-independent clonogenic survival to a considerably greater extent over either monotherapy. The administration of carboplatin and panobinostat at clinically relevant doses to NOD-SCID xenograft mice drastically stalled disease progression by 92% as compared with negative control (P = .0026), which was greater than the 28% and 54% achieved with either carboplatin (P = .220) or panobinostat (P = .017) alone. These data demonstrate that panobinostat has strong anti-NSCLC activity and chemosensitizes tumors to carboplatin, thus justifying further evaluation of this combination approach in clinical trials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Células A549 , Animais , Carboplatina/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Indóis/administração & dosagem , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Panobinostat , Transdução de Sinais/efeitos dos fármacos
5.
Mol Cancer Ther ; 15(12): 3087-3096, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27638859

RESUMO

Identification of synthetically lethal cellular targets and synergistic drug combinations is important in cancer chemotherapy as they help to overcome treatment resistance and increase efficacy. The Ataxia Telangiectasia Mutated (ATM) kinase is a nuclear protein that plays a major role in the initiation of DNA repair signaling and cell-cycle check points during DNA damage. Although ATM was shown to be associated with poor prognosis in gastric cancer, its implications as a predictive biomarker for cancer chemotherapy remain unexplored. The present study evaluated ATM-induced synthetic lethality and its role in sensitization of gastric cancer cells to PARP and TOP1 inhibitors, veliparib (ABT-888) and irinotecan (CPT-11), respectively. ATM expression was detected in a panel of gastric cell lines, and the IC50 against each inhibitors was determined. The combinatorial effect of ABT-888 and CPT-11 in gastric cancer cells was also determined both in vitro and in vivo ATM deficiency was found to be associated with enhanced sensitivity to ABT-888 and CPT-11 monotherapy, hence suggesting a mechanism of synthetic lethality. Cells with high ATM expression showed reduced sensitivity to monotherapy; however, they showed a higher therapeutic effect with ABT-888 and CPT-11 combinatorial therapy. Furthermore, ATM expression was shown to play a major role in cellular homeostasis by regulating cell-cycle progression and apoptosis in a P53-independent manner. The present study highlights the clinical utility of ATM expression as a predictive marker for sensitivity of gastric cancer cells to PARP and TOP1 inhibition and provides a deeper mechanistic insight into ATM-dependent regulation of cellular processes. Mol Cancer Ther; 15(12); 3087-96. ©2016 AACR.


Assuntos
Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/genética , Benzimidazóis/farmacologia , Camptotecina/análogos & derivados , Ciclo Celular , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Camptotecina/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Expressão Gênica , Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Irinotecano , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Microbiology (Reading) ; 162(8): 1360-1366, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27283429

RESUMO

Galectin-3 (Gal-3) is a ß-galactoside lectin that is upregulated and rapidly secreted by gastric epithelial cells in response to Helicobacter pylori infection. An earlier study reported the involvement of H. pylori cytotoxin-associated gene A (cagA) in the expression of intracellular Gal-3. However, the role of extracellular Gal-3 and its functional significance in H. pylori-infected cells remains uncharacterized. Data presented here demonstrate secretion of Gal-3 is an initial host response event in gastric epithelial cells during H. pylori infection and is independent of CagA. Previously, Gal-3 was shown to bind to H. pylori LPS. The present study elaborates the significance of this binding, as extracellular recombinant Gal-3 (rGal-3) was shown to inhibit the adhesion of H. pylori to the gastric epithelial cells. Interestingly, a decrease in H. pylori adhesion to host cells also resulted in a decrease in apoptosis. Furthermore, the study also demonstrated a chemoattractant role of extracellular rGal-3 in the recruitment of THP-1 monocytes. This study outlines the previously unidentified roles of extracellular Gal-3 where it acts as a negative regulator of H. pylori adhesion and apoptosis in gastric epithelial cells, and as a chemoattractant to THP-1 monocytes. Our findings could contribute to the better understanding of how Gal-3 acts as a modulator under H. pylori-induced pathological conditions.


Assuntos
Antígenos de Bactérias/metabolismo , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Quimiotaxia/fisiologia , Células Epiteliais/microbiologia , Galectina 3/metabolismo , Helicobacter pylori/metabolismo , Antígenos de Bactérias/genética , Apoptose/fisiologia , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Infecções por Helicobacter/patologia , Humanos , Neoplasias Gástricas/patologia
7.
Cell Biol Toxicol ; 32(1): 23-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27044250

RESUMO

Galectin 3 (Gal-3) is upregulated in gastric epithelial cells as a host response to Helicobacter pylori infection. However, the significance of Gal-3 expression in H. pylori-infected cells is not well established. We analyzed Gal-3 intracellular expression, localization, and its effects in H. pylori-infected gastric epithelial cells. The predominantly nuclear confined Gal-3 was shown to be upregulated and exported out to the cytoplasm in H. pylori-infected AGS cells. The nuclear export was channeled through CRM-1 (exportin-1) protein. Interestingly, knock down of Gal-3 expression led to reduced NF-κB promoter activity and interleukin-8 (IL-8) secretion, suggesting its pro-inflammatory roles. Furthermore, Gal-3 was found to be pro-proliferative and anti-apoptotic in nature, as its knock down caused a reduction in cell proliferation and an increase in apoptosis, respectively. Taken together, our data suggest the expression and upregulation of Gal-3 as a critical endogenous event in H. pylori infection that interferes with various intracellular events, causing prolonged cell survival, which is characteristic in carcinogenesis.


Assuntos
Galectina 3/biossíntese , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/patologia , Humanos , Interleucina-8/metabolismo , Carioferinas/metabolismo , NF-kappa B/metabolismo , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Regulação para Cima , Proteína Exportina 1
8.
Cell Oncol (Dordr) ; 39(2): 175-86, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26868260

RESUMO

BACKGROUND: Melanoma-associated antigen (MAGE)-A3 is a member of the family of cancer-testis antigens and has been found to be epigenetically regulated and aberrantly expressed in various cancer types. It has also been found that MAGE-A3 expression may correlate with an aggressive clinical course and with chemo-resistance. The objectives of this study were to assess the relationship between MAGE-A3 promoter methylation and expression and (1) gastric cancer patient survival and (2) its functional consequences in gastric cancer-derived cells. METHODS: Samples from two independent gastric cancer cohorts (including matched non-malignant gastric samples) were included in this study. MAGE-A3 methylation and mRNA expression levels were determined by methylation-specific PCR (MSP) and quantitative real-time PCR (qPCR), respectively. MAGE-A3 expression was knocked down in MKN1 gastric cancer-derived cells using miRNAs. In addition, in vitro cell proliferation, colony formation, apoptosis, cell cycle, drug treatment, immunohistochemistry and Western blot assays were performed. RESULTS: Clinical analysis of 223 primary patient-derived samples (ntumor = 161, nnormal = 62) showed a significant inverse correlation between MAGE-A3 promoter methylation and expression in the cancer samples (R = -0.63, p = 5.99e-19). A lower MAGE-A3 methylation level was found to be associated with a worse patient survival (HR: 1.5, 95 % CI: 1.02-2.37, p = 0.04). In addition, we found that miRNA-mediated knockdown of MAGE-A3 expression in MKN1 cells caused a reduction in its proliferation and colony forming capacities, respectively. Under stress conditions MAGE-A3 was found to regulate the expression of Bax and p21. MAGE-A3 knock down also led to an increase in Puma and Noxa expression, thus contributing to an enhanced docetaxel sensitivity in the gastric cancer-derived cells. CONCLUSIONS: From our results we conclude that MAGE-A3 expression is regulated epigenetically by promoter methylation, and that its expression contributes to gastric cell proliferation and drug sensitivity. This study underscores the potential implications of MAGE-A3 as a therapeutic target and prognostic marker in gastric cancer patients.


Assuntos
Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Antígenos de Neoplasias/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Docetaxel , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas , Estresse Fisiológico/efeitos dos fármacos , Análise de Sobrevida , Taxoides/farmacologia , Ensaio Tumoral de Célula-Tronco
9.
J Immunol Res ; 2015: 308574, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579545

RESUMO

In cancer biology, cells and molecules that form the fundamental components of the tumor microenvironment play a major role in tumor initiation, and progression as well as responses to therapy. Therapeutic approaches that would enable and harness the immune system to target tumor cells mark the future of anticancer therapy as it could induce an immunological memory specific to the tumor type and further enhance tumor regression and relapse-free survival in cancer patients. Gastric cancer is one of the leading causes of cancer-related mortalities that has a modest survival benefit from existing treatment options. The advent of immunotherapy presents us with new approaches in gastric cancer treatment where adaptive cell therapies, cancer vaccines, and antibody therapies have all been used with promising outcomes. In this paper, we review the current advances and prospects in the gastric cancer immunotherapy. Special focus is laid on new strategies and clinical trials that attempt to enhance the efficacy of various immunotherapeutic modalities in gastric cancer.


Assuntos
Fenômenos do Sistema Imunitário , Imunoterapia/métodos , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/terapia , Vacinas Anticâncer/imunologia , Ensaios Clínicos como Assunto , Humanos , Memória Imunológica , Monitorização Imunológica , Microambiente Tumoral
10.
BMC Cancer ; 15: 550, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-26209226

RESUMO

BACKGROUND: Platinum based therapy is commonly used in the treatment of advanced gastric cancer. However, resistance to chemotherapy is a major challenge that causes marked variation in individual response rate and survival rate. In this study, we aimed to identify the expression of GTSE1 and its correlation with cisplatin resistance in gastric cancer cells. METHODS: Methylation profiling was carried out in tissue samples from gastric cancer patients before undergoing neoadjuvent therapy using docetaxel, cisplatin and 5FU (DCX) and in gastric cancer cell lines. The correlation between GTSE1 expression and methylation in gastric cancer cells was determined by RT-PCR and MSP respectively. GTSE1 expression was knocked-down using shRNA's and its effects on cisplatin cytotoxicity and cell survival were detected by MTS, proliferation and clonogenic survival assays. Additionally, the effect of GTSE1 knock down in drug induced apoptosis was determined by western blotting and apoptosis assays. RESULTS: GTSE1 exhibited a differential methylation index in gastric cancer patients and in cell lines that correlated with DCX treatment response and cisplatin sensitivity, respectively. In-vitro, GTSE1 expression showed a direct correlation with hypomethylation. Interestingly, Cisplatin treatment induced a dose dependent up regulation as well as nuclear translocation of GTSE1 expression in gastric cancer cells. Knock down of GTSE1 enhanced cisplatin cytotoxity and led to a significant reduction in cell proliferation and clonogenic survival. Also, loss of GTSE1 expression caused a significant increase in P53 mediated apoptosis in cisplatin treated cells. CONCLUSION: Our study identifies GTSE1 as a biomarker for cisplatin resistance in gastric cancer cells. This study also suggests the repressive role of GTSE1 in cisplatin induced apoptosis and signifies its potential utility as a therapeutic target for better clinical management of gastric cancer patients.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Adulto , Idoso , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
11.
Microbiology (Reading) ; 161(6): 1150-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25721850

RESUMO

Helicobacter pylori is a major aetiological agent in the development of various gastroduodenal diseases. Its persistence in gastric mucosa is determined by the interaction between various host, microbial and environmental factors. The bacterium colonizes the gastric epithelium and induces activation of various chemokine mediators, including NFκB, the master regulator of inflammation. H. pylori infection is also associated with an increase in expression of cell cycle regulators, thereby leading to mucosal cell hyper-proliferation. Thus, H. pylori-associated infections manifest activation of key host response events, which inadvertently could lead to the establishment of chronic infection and neoplastic progression. This article reviews and elaborates the current knowledge in H. pylori-induced activation of various host signalling pathways that could promote cancer development. Special focus is placed on the inflammatory and proliferative responses that could serve as suitable biomarkers of infection, since a sustained cell proliferation in an environment rich in inflammatory cells is characteristic in H. pylori-associated gastric malignancies. Here, the role of ERK and WNT signalling in H. pylori-induced activation of inflammatory and proliferative responses respectively is discussed in detail. An in depth analysis of the underlying signalling pathways and interacting partners causing alterations in these crucial host responses could contribute to the development of successful therapeutic strategies for the prevention, management and treatment of H. pylori infection.


Assuntos
Helicobacter pylori/fisiologia , Interações Hospedeiro-Patógeno , Inflamação/microbiologia , Sistema de Sinalização das MAP Quinases , Neoplasias Gástricas/microbiologia , Via de Sinalização Wnt , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...