Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-25, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37599624

RESUMO

Nanoencapsulation has found numerous applications in the food and nutraceutical industries. Micro and nanoencapsulated forms of bioactives have proven benefits in terms of stability, release, and performance in the body. However, the encapsulated ingredient is often subjected to a wide range of processing conditions and this is followed by storage, consumption, and transit along the gastrointestinal tract. A strong understanding of the fate of nanoencapsulates in the biological system is mandatory as it provides valuable insights for ingredient selection, formulation, and application. In addition to their efficacy, there is also the need to assess the safety of ingested nanoencapsulates. Given the rising research and commercial focus of this subject, this review provides a strong focus on their interaction factors and mechanisms, highlighting their prospective biological fate. This review also covers various approaches to studying the fate of nanoencapsulates in the body. Also, with emphasis on the overall scope, the need for a new advanced integrated common methodology to evaluate the fate of nanoencapsulates post-administration is discussed.

2.
Chemosphere ; 285: 131381, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34329147

RESUMO

Biosurfactant producing bacterial strains were isolated from oil-contaminated sites at Chennai Petroleum Corporation Limited, Chennai, the potential strain was selected and identified as Pseudomonas aeruginosa TEN01 by 16 S rRNA sequencing technique. Biosurfactant was produced from cassava solid waste from the sago industry. Further, it was extracted by solvent extraction and partially purified by column chromatography. The partially purified biosurfactant was qualitatively analyzed by Thin Layer Chromatography (TLC), quantitatively analyzed by anthrone assay and characterized by Fourier Transform Infra-Red Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS). Rf value and chemical groups confirm the presence of glycolipid in the partially purified biosurfactant. GC-MS results confirmed the presence of long-chain fatty acids and carbohydrate which is found to be mainly present in glycolipids. Biosurfactants are surface-active molecules which have been found to be the best alternative to chemical-based surfactants. The present study focuses on modifying the cell surface using a biosurfactant from P. aeruginosa TEN01 to enhance membrane permeabilization. Antibacterial and chemotaxis properties of biosurfactant from P. aeruginosa TEN01 were found to be better towards Xenorhabdus poinarii, a bio-pesticide producing microbial strain, X. poinarii exhibited 81.7% adhesion to hydrocarbons upon biosurfactant treatment as analyzed by Bacterial Adhesion to Hydrocarbon (BATH) assay. The alteration in the membrane permeability was tested in X. poinarii using biosurfactant and chemical surfactants viz. Sodium dodecyl sulfate (SDS) and toluene by estimating the amount of intracellular protein released. High protein recovery (51.55%) was achieved with a biosurfactant. Cell viability in the biosurfactant-treated cells was also high (93.98%) in comparison to cells treated with chemical surfactants. Increased recovery of intracellular protein along with high cell viability makes the biosurfactant a potential candidate for application in numerous environmental fields.


Assuntos
Petróleo , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Biodegradação Ambiental , Biomassa , Quimiotaxia , Índia , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos , Xenorhabdus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...