Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 207(1): 34-43, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34108258

RESUMO

Systemic lupus erythematosus (SLE) is associated with an IL-2-deficient state, with regulatory T cells (Tregs) showing diminished immune regulatory capacity. A low dose of IL-2 has shown encouraging clinical benefits in SLE patients; however, its clinical utility is limited because of the requirement of daily injections and the observation of increase in proinflammatory cytokines and in non-Tregs. We recently showed that a fusion protein of mouse IL-2 and mouse IL-2Rα (CD25), joined by a noncleavable linker, was effective in treating diabetes in NOD mice by selectively inducing Treg expansion. In this report, we show that mouse IL-2 (mIL-2)/CD25 at doses up to 0.5 mg/kg twice a week induced a robust Treg expansion without showing signs of increase in the numbers of NK, CD4+Foxp3-, or CD8+ T cells or significant increase in proinflammatory cytokines. In both NZB × NZW and MRL/lpr mice, mIL-2/CD25 at 0.2-0.4 mg/kg twice a week demonstrated efficacy in inducing Treg expansion, CD25 upregulation, and inhibiting lupus nephritis based on the levels of proteinuria, autoantibody titers, and kidney histology scores. mIL-2/CD25 was effective even when treatment was initiated at the time when NZB × NZW mice already showed signs of advanced disease. Furthermore, we show coadministration of prednisolone, which SLE patients commonly take, did not interfere with the ability of mIL-2/CD25 to expand Tregs. The prednisolone and mIL-2/CD25 combination treatment results in improvements in most of the efficacy readouts relative to either monotherapy alone. Taken together, our results support further evaluation of IL-2/CD25 in the clinic for treating immune-mediated diseases such as SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Linfócitos T Reguladores , Animais , Linfócitos T CD8-Positivos , Fatores de Transcrição Forkhead , Humanos , Interleucina-2 , Subunidade alfa de Receptor de Interleucina-2 , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Endogâmicos NOD
2.
ACS Med Chem Lett ; 11(7): 1402-1409, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32676146

RESUMO

IRAK4 is an attractive therapeutic target for the treatment of inflammatory conditions. Structure guided optimization of a nicotinamide series of inhibitors has been expanded to explore the IRAK4 front pocket. This has resulted in the identification of compounds such as 12 with improved potency and selectivity. Additionally 12 demonstrated activity in a pharmacokinetics/pharmacodynamics (PK/PD) model. Further optimization efforts led to the identification of the highly kinome selective 21, which demonstrated a robust PD effect and efficacy in a TLR7 driven model of murine psoriasis.

3.
J Psychopharmacol ; 33(1): 25-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30484737

RESUMO

BACKGROUND: A significant proportion of patients suffering from major depression fail to remit following treatment and develop treatment-resistant depression. Developing novel treatments requires animal models with good predictive validity. MRL/lpr mice, an established model of systemic lupus erythematosus, show depression-like behavior. AIMS: We evaluated responses to classical antidepressants, and associated immunological and biochemical changes in MRL/lpr mice. METHODS AND RESULTS: MRL/lpr mice showed increased immobility in the forced swim test, decreased wheel running and sucrose preference when compared with the controls, MRL/MpJ mice. In MRL/lpr mice, acute fluoxetine (30 mg/kg, intraperitoneally (i.p.)), imipramine (10 mg/kg, i.p.) or duloxetine (10 mg/kg, i.p.) did not decrease the immobility time in the Forced Swim Test. Interestingly, acute administration of combinations of olanzapine (0.03 mg/kg, subcutaneously)+fluoxetine (30 mg/kg, i.p.) or bupropion (10 mg/kg, i.p.)+fluoxetine (30 mg/kg, i.p.) retained efficacy. A single dose of ketamine but not three weeks of imipramine (10 mg/kg, i.p.) or escitalopram (5 mg/kg, i.p.) treatment in MRL/lpr mice restored sucrose preference. Further, we evaluated inflammatory, immune-mediated and neuronal mechanisms. In MRL/lpr mice, there was an increase in autoantibodies' titers, [3H]PK11195 binding and immune complex deposition. There was a significant infiltration of the brain by macrophages, neutrophils and T-lymphocytes. p11 mRNA expression was decreased in the prefrontal cortex. Further, there was an increase in the 5-HT2aR expression, plasma corticosterone and indoleamine 2,3-dioxygenase activity. CONCLUSION: In summary, the MRL/lpr mice could be a useful model for Treatment Resistant Depression associated with immune dysfunction with potential to expedite antidepressant drug discovery.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Modelos Animais de Doenças , Ketamina/uso terapêutico , Lúpus Eritematoso Sistêmico/complicações , Animais , Corticosterona/sangue , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos MRL lpr , Receptor 5-HT2A de Serotonina/análise
4.
J Immunol ; 198(3): 1308-1319, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003376

RESUMO

The serine/threonine kinase IL-1R-associated kinase (IRAK)4 is a critical regulator of innate immunity. We have identified BMS-986126, a potent, highly selective inhibitor of IRAK4 kinase activity that demonstrates equipotent activity against multiple MyD88-dependent responses both in vitro and in vivo. BMS-986126 failed to inhibit assays downstream of MyD88-independent receptors, including the TNF receptor and TLR3. Very little activity was seen downstream of TLR4, which can also activate an MyD88-independent pathway. In mice, the compound inhibited cytokine production induced by injection of several different TLR agonists, including those for TLR2, TLR7, and TLR9. The compound also significantly suppressed skin inflammation induced by topical administration of the TLR7 agonist imiquimod. BMS-986126 demonstrated robust activity in the MRL/lpr and NZB/NZW models of lupus, inhibiting multiple pathogenic responses. In the MRL/lpr model, robust activity was observed with the combination of suboptimal doses of BMS-986126 and prednisolone, suggesting the potential for steroid sparing activity. BMS-986126 also demonstrated synergy with prednisolone in assays of TLR7- and TLR9-induced IFN target gene expression using human PBMCs. Lastly, BMS-986126 inhibited TLR7- and TLR9-dependent responses using cells derived from lupus patients, suggesting that inhibition of IRAK4 has the potential for therapeutic benefit in treating lupus.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Prednisolona/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/fisiologia , Receptor 7 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologia
5.
Int Immunopharmacol ; 21(2): 328-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24859061

RESUMO

Inflammatory bowel disease (IBD) is an idiopathic chronic inflammation of the gastrointestinal tract which is mainly caused by dysregulated gut immune response to commensal flora. Very limited treatment options with marginal efficacy are available along with surgery which has high risk of reoccurrence. As both innate and adaptive immune responses have been found altered in IBD, a good therapeutic strategy could be to restrict both of them under chronic inflammatory conditions. Effect of chloroquine on TLR9 signaling is well reported, while there are limited studies on non-endosomal TLRs as well as T cell responses. Hence, we studied its effect on other TLRs as well as T cell response along with testing it as a potential therapeutics in IBD using murine preclinical colitis model. Chloroquine significantly suppressed the TLR2 as well as TLR9 signaling in both in vitro as well as in vivo experimental settings, while it had no effect on TLR4 pathway. It also suppressed the T cell cytokine and proliferative responses. In, DSS-induced murine colitis model, chloroquine administration, significantly improved body weight loss, colon length shortening, tissue damage and inflammatory cell infiltration. Based on our findings in preclinical murine model of IBD, chloroquine has the potential to be considered as a therapeutic option in clinics through inhibition of diverse TLR and T cell responses.


Assuntos
Cloroquina/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colite/tratamento farmacológico , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Doenças Inflamatórias Intestinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...