Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Gene ; 926: 148636, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38830517

RESUMO

Earthworm, P. excavatus, is an ideal model organism for studying regeneration. Due to its prodigious regeneration capability, the amputated head part of the earthworm can regenerate completely within 22 days. MicroRNAs (miRNAs) regulate specific genes and are involved in essential biological processes, including regeneration. In this study, we conducted a comprehensive analysis of miRNA profiling of the earthworm, P. excavatus, during the process of anterior regeneration. Our investigation involved in the identification of 55 miRNAs from 30 distinct miRNA families that exhibit significant relevance to wound healing and regeneration. Notably, we have identified 50 novel miRNAs and predicted their pre-miRNA secondary structures using MIREAP. Both Known and Novel miRNAs are validated using qPCR. In addition, we employed the miRanda algorithm to predict the interactions between these miRNAs and their target mRNA transcripts. Based on the miRanda target prediction results, we identified the target genes such as Wnt, Myc, MAPK, SoxB, IHH, Hox, and Notch. These findings indicate that the potential targets of these miRNAs might play crucial roles in various functions related to wound healing, tissue restoration, and regeneration. Furthermore, the acquisition of these findings provides a unique perspective on understanding the molecular mechanisms driving epimorphosis regeneration in connection with miRNAs for the development of miRNA-based therapeutics.


Assuntos
MicroRNAs , Oligoquetos , Regeneração , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Oligoquetos/genética , Oligoquetos/metabolismo , Regeneração/genética , Perfilação da Expressão Gênica/métodos , Cicatrização/genética , Regulação da Expressão Gênica
3.
Sci Rep ; 14(1): 5606, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453984

RESUMO

Fetal bovine serum (FBS) plays a pivotal role in animal cell culture. Due to ethical and scientific issues, searching for an alternative, comprising the three R's (Refinement, Reduction and Replacement) gained global attention. In this context, we have identified the heat inactivated coelomic fluid (HI-CF) of the earthworm, Perionyx excavatus as a potential alternative for FBS. Briefly, we formulated HI-CF (f-HICF) containing serum free medium which can aid the growth, attachment, and proliferation of adherent cells, similar to FBS. In this study, we investigated the biochemical characterization, sterility, stability, formulation, and functional analysis of HI-CF as a supplement in culturing animal cells. Notably, vitamins, micronutrients, proteins, lipids, and trace elements are identified and compared with FBS for effective normalization of the serum free media. HI-CF is tested to be devoid of endotoxin and mycoplasma contamination thus can qualify the cell culture grade. The f-HICF serum free media was prepared, optimised, and tested with A549, HeLa, 3T3, Vero and C2C12 cell lines. Our results conclude that f-HICF is a potential alternative to FBS, in accordance with ethical concern; compliance with 3R's; lack of unintended antibody interactions; presence of macro and micronutrients; simple extraction; cost-effectiveness and availability.


Assuntos
Oligoquetos , Soroalbumina Bovina , Humanos , Animais , Meios de Cultura Livres de Soro , Meios de Cultura/química , Temperatura Alta , Técnicas de Cultura de Células/métodos , Células HeLa , Vitaminas , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...