Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 18(45): 8554-8560, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350122

RESUMO

In many tissues, cell type varies over single-cell length-scales, creating detailed heterogeneities fundamental to physiological function. To gain understanding of the relationship between tissue function and detailed structure, and eventually to engineer structurally and physiologically accurate tissues, we need the ability to assemble 3D cellular structures having the level of detail found in living tissue. Here we introduce a method of 3D cell assembly having a level of precision finer than the single-cell scale. With this method we create detailed cellular patterns, demonstrating that cell type can be varied over the single-cell scale and showing function after their assembly.

2.
Biophys Rev (Melville) ; 3(3): 031307, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38505275

RESUMO

Many recently developed 3D bioprinting strategies operate by extruding aqueous biopolymer solutions directly into a variety of different support materials constituted from swollen, solvated, aqueous, polymer assemblies. In developing these 3D printing methods and materials, great care is often taken to tune the rheological behaviors of both inks and 3D support media. By contrast, much less attention has been given to the physics of the interfaces created when structuring one polymer phase into another in embedded 3D printing applications. For example, it is currently unclear whether a dynamic interfacial tension between miscible phases stabilizes embedded 3D bioprinted structures as they are shaped while in a liquid state. Interest in the physics of interfaces between complex fluids has grown dramatically since the discovery of liquid-liquid phase separation (LLPS) in living cells. We believe that many new insights coming from this burst of investigation into LLPS within biological contexts can be leveraged to develop new materials and methods for improved 3D bioprinting that leverage LLPS in mixtures of biopolymers, biocompatible synthetic polymers, and proteins. Thus, in this review article, we highlight work at the interface between recent LLPS research and embedded 3D bioprinting methods and materials, and we introduce a 3D bioprinting method that leverages LLPS to stabilize printed biopolymer inks embedded in a bioprinting support material.

3.
Bioinspir Biomim ; 11(5): 056007, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27545614

RESUMO

Passive mechanosensing is an energy-efficient and effective recourse for autonomous underwater vehicles (AUVs) for perceiving their surroundings. The passive sensory organs of aquatic animals have provided inspiration to biomimetic researchers for developing underwater passive sensing systems for AUVs. This work is inspired by the 'integumentary sensory organs' (ISOs) which are dispersed on the skin of crocodiles and are equipped with slowly adapting (SA) and rapidly adapting (RA) receptors. ISOs assist crocodiles in locating the origin of a disturbance, both on the water surface and under water, thereby enabling them to hunt prey even in a dark environment and turbid waters. In this study, we construct SA dome receptors embedded with microelectromechanical systems (MEMS) piezoresistive sensors to measure the steady-state pressures imparted by flows and RA dome receptors embedded with MEMS piezoelectric sensors to detect oscillatory pressures in water. Experimental results manifest the ability of SA and RA dome receptors to sense the direction of steady-state flows and oscillatory disturbances, respectively. As a proof of concept, the SA domes are tested on the hull of a kayak under various pressure variations owing to different types of movements of the hull. Our results indicate that the dome receptors are capable of discerning the angle of attack and speed of the flow.


Assuntos
Jacarés e Crocodilos/fisiologia , Materiais Biomiméticos , Pressão Hidrostática , Mecanorreceptores/fisiologia , Animais , Biomimética , Desenho de Equipamento , Hidrodinâmica , Sistemas Microeletromecânicos , Pele/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...