Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Alcohol Depend ; 133(2): 344-51, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23876860

RESUMO

BACKGROUND: Cocaine-related deaths are continuously rising and its overdose is often associated with lethal cardiotoxic effects. METHODS AND RESULTS: Our approach, employing isothermal titration calorimetry (ITC) and light scattering in parallel, has confirmed the significant affinity of human cardiac calsequestrin (CASQ2) for cocaine. Calsequestrin (CASQ) is a major Ca(2+)-storage protein within the sarcoplasmic reticulum (SR) of both cardiac and skeletal muscles. CASQ acts as a Ca(2+) buffer and Ca(2+)-channel regulator through its unique Ca(2+)-dependent oligomerization. Equilibrium dialysis and atomic absorption spectroscopy experiments illustrated the perturbational effect of cocaine on CASQ2 polymerization, resulting in substantial reduction of its Ca(2+)-binding capacity. We also confirmed the accumulation of cocaine in rat heart tissue and the substantial effects cocaine has on cultured C2C12 cells. The same experiments were performed with methamphetamine as a control, which displayed neither affinity for CASQ2 nor any significant effects on its function. Since cocaine did not have any direct effect on the Ca(2+)-release channel judging from our single channel recordings, these studies provide new insights into how cocaine may interfere with the normal E-C coupling mechanism with lethal arrhythmogenic consequences. CONCLUSION: We propose that cocaine accumulates in SR through its affinity for CASQ2 and affects both SR Ca(2+) storage and release by altering the normal CASQ2 Ca(2+)-dependent polymerization. By this mechanism, cocaine use could produce serious cardiac problems, especially in people who have genetically-impaired CASQ2, defects in other E-C coupling components, or compromised cocaine metabolism and clearance.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Calsequestrina/fisiologia , Cocaína/efeitos adversos , Coração/fisiopatologia , Animais , Arritmias Cardíacas/fisiopatologia , Canais de Cálcio/fisiologia , Calorimetria , Calsequestrina/metabolismo , Linhagem Celular , Cocaína/metabolismo , Diálise , Luz , Camundongos , Modelos Moleculares , Peso Molecular , Miocárdio/citologia , Miocárdio/metabolismo , Ligação Proteica , Conformação Proteica , Ratos , Ratos Sprague-Dawley , Retículo Sarcoplasmático/metabolismo , Espalhamento de Radiação , Espectrofotometria Atômica
2.
J Phys Chem B ; 115(21): 6853-61, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21561115

RESUMO

We have studied secretory phospholipase A(2)-IIA (sPLA(2)) activity toward different phospholipid analogues by performing biophysical characterizations and molecular dynamics simulations. The phospholipids were natural substrates, triple alkyl phospholipids, a prodrug anticancer etherlipid, and an inverted ester. The latter were included to study head group-enzyme interactions. Our simulation results show that the lipids are optimally placed into the binding cleft and that water molecules can freely reach the active site through a well-defined pathway; both are indicative that these substrates are efficiently hydrolyzed, which is in good agreement with our experimental data. The phospholipid analogue with three alkyl side chains forms aggregates of different shapes with no well-defined sizes due to its cone-shape structure. Phosphatidylglycerol and phosphatidylcholine head groups interact with specific charged residues, but relatively large fluctuations are observed, suggesting that these interactions are not necessarily important for stabilizing substrate binding to the enzyme.


Assuntos
Biocatálise , Fosfolipases A2 do Grupo II/metabolismo , Agkistrodon , Animais , Venenos de Abelha/enzimologia , Varredura Diferencial de Calorimetria , Domínio Catalítico , Venenos de Crotalídeos/enzimologia , Fosfolipases A2 do Grupo II/química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Estereoisomerismo , Especificidade por Substrato , Água/química
3.
J Med Chem ; 53(9): 3782-92, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20405849

RESUMO

The design of retinoid phospholipid prodrugs is described based on molecular dynamics simulations and cytotoxicity studies of synthetic retinoid esters. The prodrugs are degradable by secretory phospholipase A(2) IIA and have potential in liposomal drug delivery targeting tumors. We have synthesized four different retinoid phospholipid prodrugs and shown that they form particles in the liposome size region with average diameters of 94-118 nm. Upon subjection to phospholipase A(2), the lipid prodrugs were hydrolyzed, releasing cytotoxic retinoids and lysolipids. The formulated lipid prodrugs displayed IC(50) values in the range of 3-19 microM toward HT-29 and Colo205 colon cancer cells in the presence of phospholipase A(2), while no significant cell death was observed in the absence of the enzyme.


Assuntos
Desenho de Fármacos , Lipossomos/química , Fosfolipases A2/metabolismo , Pró-Fármacos/metabolismo , Retinoides/química , Morte Celular , Linhagem Celular Tumoral , Citotoxinas , Humanos , Concentração Inibidora 50 , Lipossomos/uso terapêutico , Simulação de Dinâmica Molecular , Nanopartículas , Tamanho da Partícula , Fosfolipídeos , Retinoides/uso terapêutico
4.
Nat Mater ; 9(3): 245-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20154691

RESUMO

Strontium titanate is seeing increasing interest in fields ranging from thin-film growth to water-splitting catalysis and electronic devices. Although the surface structure and chemistry are of vital importance to many of these applications, theories about the driving forces vary widely. We report here a solution to the 3 x 1 SrTiO(3)(110) surface structure obtained through transmission electron diffraction and direct methods, and confirmed through density functional theory calculations and scanning tunnelling microscopy images and simulations, consisting of rings of six or eight corner-sharing TiO(4) tetrahedra. Further, by changing the number of tetrahedra per ring, a homologous series of n x 1 (n > or = 2) surface reconstructions is formed. Calculations show that the lower members of the series (n < or = 6) are thermodynamically stable and the structures agree with scanning tunnelling microscopy images. Although the surface energy of a crystal is usually thought to determine the structure and stoichiometry, we demonstrate that the opposite can occur. The n x 1 reconstructions are sufficiently close in energy for the stoichiometry in the near-surface region to determine which reconstruction is formed. Our results indicate that the rules of inorganic coordination chemistry apply to oxide surfaces, with concepts such as homologous series and intergrowths as valid at the surface as they are in the bulk.

5.
Microsc Microanal ; 10(1): 96-104, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15306071

RESUMO

Kinematical and two-beam calculations have been conducted and are compared to experimental precession data for the large unit cell crystal La4Cu3MoO12. Precession electron diffraction intensities are found to exhibit approximate two-beam behavior and demonstrate clear advantages over conventional SADP intensities for use in structure solution.


Assuntos
Microscopia Eletrônica/métodos , Óxidos/química , Difração de Raios X , Cobre/análise , Cristalização , Processamento de Imagem Assistida por Computador , Lantânio/análise , Microscopia Eletrônica/instrumentação , Molibdênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...