Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38990055

RESUMO

Klebsiella pneumoniae (Kp) is an infectious disease pathogen that poses a significant global health threat due to its potential to cause severe infections and its tendency to exhibit multidrug resistance. Understanding the enzymatic mechanisms of the oxygen-insensitive nitroreductases (Kp-NRs) from Kp is crucial for the development of effective nitrofuran drugs, such as nitrofurantoin, that can be activated as antibiotics. In this paper, three crystal structures of two Kp-NRs (PDB entries 7tmf/7tmg and 8dor) are presented, and an analysis of their crystal structures and their flavin mononucleotide (FMN)-binding mode is provided. The structures with PDB codes 7tmf (Kp-NR1a), 7tmg (Kp-NR1b) and 8dor (Kp-NR2) were determined at resolutions of 1.97, 1.90 and 1.35 Å, respectively. The Kp-NR1a and Kp-NR1b structures adopt an αß fold, in which four-stranded antiparallel ß-sheets are surrounded by five helices. With domain swapping, the ß-sheet was expanded with a ß-strand from the other molecule of the dimer. The difference between the structures lies in the loop spanning Leu173-Ala185: in Kp-NR1a the loop is disordered, whereas the loop adopts multiple conformations in Kp-NR1b. The FMN interactions within Kp-NR1/NR2 involve hydrogen-bond and π-stacking interactions. Kp-NR2 contains four-stranded antiparallel ß-sheets surrounded by eight helices with two short helices and one ß-sheet. Structural and sequence alignments show that Kp-NR1a/b and Kp-NR2 are homologs of the Escherichia coli oxygen-insensitive NRs YdjA and NfnB and of Enterobacter cloacae NR, respectively. By homology inference from E. coli, Kp-NR1a/b and Kp-NR2 may detoxify polynitroaromatic compounds and Kp-NR2 may activate nitrofuran drugs to cause bactericidal activity through a ping-pong bi-bi mechanism, respectively.

2.
ACS Infect Dis ; 9(11): 2190-2201, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37820055

RESUMO

Pathogenic free-living amoebae (pFLA) can cause life-threatening central nervous system (CNS) infections and warrant the investigation of new chemical agents to combat the rise of infection from these pathogens. Naegleria fowleri glucokinase (NfGlck), a key metabolic enzyme involved in generating glucose-6-phosphate, was previously identified as a potential target due to its limited sequence similarity with human Glck (HsGlck). Herein, we used our previously demonstrated multifragment kinetic target-guided synthesis (KTGS) screening strategy to identify inhibitors against pFLA glucokinases. Unlike the majority of previous KTGS reports, our current study implements a "shotgun" approach, where fragments were not biased by predetermined binding potentials. The study resulted in the identification of 12 inhibitors against 3 pFLA glucokinase enzymes─NfGlck, Balamuthia mandrillaris Glck (BmGlck), and Acanthamoeba castellanii Glck (AcGlck). This work demonstrates the utility of KTGS to identify small-molecule binders for biological targets where resolved X-ray crystal structures are not readily accessible.


Assuntos
Acanthamoeba castellanii , Amoeba , Balamuthia mandrillaris , Naegleria fowleri , Humanos , Glucoquinase
3.
Contemp Clin Trials Commun ; 33: 101106, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37063166

RESUMO

In the summer of 2020, multiple efforts were undertaken to establish safe and effective vaccines to combat the spread of the coronavirus disease (COVID-19). In the United States (U.S.), Operation Warp Speed (OWS) was the program designated to coordinate such efforts. OWS was a partnership between the Department of Health and Human Services (HHS), the Department of Defense (DOD), and the private sector, that aimed to help accelerate control of the COVID-19 pandemic by advancing development, manufacturing, and distribution of vaccines, therapeutics, and diagnostics. The U.S. Department of Veterans Affairs' (VA) was identified as a potential collaborator in several large-scale OWS Phase III clinical trial efforts designed to evaluate the safety and efficacy of various vaccines that were in development. Given the global importance of these trials, it was recognized that there would be a need for a coordinated, centralized effort within VA to ensure that its medical centers (sites) would be ready and able to efficiently initiate, recruit, and enroll into these trials. The manuscript outlines the partnership and start-up activities led by two key divisions of the VA's Office of Research and Development's clinical research enterprise. These efforts focused on site and enterprise-level requirements for multiple trials, with one trial serving as the most prominently featured of these studies within the VA. As a result, several best practices arose that included designating clinical trial facilitators to study sites to support study initiation activities and successful study enrollment at these locations in an efficient and timely fashion.

4.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 8): 306-312, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35924598

RESUMO

Elizabethkingia bacteria are globally emerging pathogens that cause opportunistic and nosocomial infections, with up to 40% mortality among the immunocompromised. Elizabethkingia species are in the pipeline of organisms for high-throughput structural analysis at the Seattle Structural Genomics Center for Infectious Disease (SSGCID). These efforts include the structure-function analysis of potential therapeutic targets. Glutamyl-tRNA synthetase (GluRS) is essential for tRNA aminoacylation and is under investigation as a bacterial drug target. The SSGCID produced, crystallized and determined high-resolution structures of GluRS from E. meningosepticum (EmGluRS) and E. anopheles (EaGluRS). EmGluRS was co-crystallized with glutamate, while EaGluRS is an apo structure. EmGluRS shares ∼97% sequence identity with EaGluRS but less than 39% sequence identity with any other structure in the Protein Data Bank. EmGluRS and EaGluRS have the prototypical bacterial GluRS topology. EmGluRS and EaGluRS have similar binding sites and tertiary structures to other bacterial GluRSs that are promising drug targets. These structural similarities can be exploited for drug discovery.


Assuntos
Anopheles , Infecções por Flavobacteriaceae , Sequência de Aminoácidos , Animais , Anopheles/metabolismo , Cristalografia por Raios X , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo
6.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 3): 135-142, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234139

RESUMO

Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections globally and is one of the most commonly reported infections in the United States. There is a need to develop new therapeutics due to drug resistance and the failure of current treatments to clear persistent infections. Structures of potential C. trachomatis rational drug-discovery targets, including C. trachomatis inorganic pyrophosphatase (CtPPase), have been determined by the Seattle Structural Genomics Center for Infectious Disease. Inorganic pyrophosphatase hydrolyzes inorganic pyrophosphate during metabolism. Furthermore, bacterial inorganic pyrophosphatases have shown promise for therapeutic discovery. Here, a 2.2 Šresolution X-ray structure of CtPPase is reported. The crystal structure of CtPPase reveals shared structural features that may facilitate the repurposing of inhibitors identified for bacterial inorganic pyrophosphatases as starting points for new therapeutics for C. trachomatis.


Assuntos
Chlamydia trachomatis , Pirofosfatase Inorgânica , Chlamydia trachomatis/metabolismo , Cristalografia por Raios X , Pirofosfatase Inorgânica/metabolismo , Estados Unidos
7.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 2): 45-51, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35102892

RESUMO

Burkholderia pseudomallei infection causes melioidosis, which is often fatal if untreated. There is a need to develop new and more effective treatments for melioidosis. This study reports apo and cofactor-bound crystal structures of the potential drug target betaine aldehyde dehydrogenase (BADH) from B. pseudomallei. A structural comparison identified similarities to BADH from Pseudomonas aeruginosa which is inhibited by the drug disulfiram. This preliminary analysis could facilitate drug-repurposing studies for B. pseudomallei.


Assuntos
Proteínas de Bactérias/química , Betaína-Aldeído Desidrogenase/química , Burkholderia pseudomallei/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Betaína-Aldeído Desidrogenase/genética , Betaína-Aldeído Desidrogenase/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Pseudomonas aeruginosa/enzimologia
8.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 2): 52-58, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35102893

RESUMO

Burkholderia phymatum is an important symbiotic nitrogen-fixing betaproteobacterium. B. phymatum is beneficial, unlike other Burkholderia species, which cause disease or are potential bioagents. Structural genomics studies at the SSGCID include characterization of the structures of short-chain dehydrogenases/reductases (SDRs) from multiple Burkholderia species. The crystal structure of a short-chain dehydrogenase from B. phymatum (BpSDR) was determined in space group C2221 at a resolution of 1.80 Å. BpSDR shares less than 38% sequence identity with any known structure. The monomer is a prototypical SDR with a well conserved cofactor-binding domain despite its low sequence identity. The substrate-binding cavity is unique and offers insights into possible functions and likely inhibitors of the enzymatic functions of BpSDR.


Assuntos
Burkholderiaceae/enzimologia , NAD/química , Redutases-Desidrogenases de Cadeia Curta/química , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Coenzimas/química , Coenzimas/metabolismo , Cristalografia por Raios X , Modelos Moleculares , NAD/metabolismo , Conformação Proteica
9.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 1): 31-38, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981773

RESUMO

Members of the bacterial genus Brucella cause brucellosis, a zoonotic disease that affects both livestock and wildlife. Brucella are category B infectious agents that can be aerosolized for biological warfare. As part of the structural genomics studies at the Seattle Structural Genomics Center for Infectious Disease (SSGCID), FolM alternative dihydrofolate reductases 1 from Brucella suis and Brucella canis were produced and their structures are reported. The enzymes share ∼95% sequence identity but have less than 33% sequence identity to other homologues with known structure. The structures are prototypical NADPH-dependent short-chain reductases that share their highest tertiary-structural similarity with protozoan pteridine reductases, which are being investigated for rational therapeutic development.


Assuntos
Brucella canis , Brucella suis , Brucelose , Tetra-Hidrofolato Desidrogenase , Brucelose/microbiologia , Cristalografia por Raios X , Humanos , Tetra-Hidrofolato Desidrogenase/genética
10.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 1): 25-30, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981772

RESUMO

Paraburkholderia xenovorans degrades organic wastes, including polychlorinated biphenyls. The atomic structure of a putative dehydrogenase/reductase (SDR) from P. xenovorans (PxSDR) was determined in space group P21 at a resolution of 1.45 Å. PxSDR shares less than 37% sequence identity with any known structure and assembles as a prototypical SDR tetramer. As expected, there is some conformational flexibility and difference in the substrate-binding cavity, which explains the substrate specificity. Uniquely, the cofactor-binding cavity of PxSDR is not well conserved and differs from those of other SDRs. PxSDR has an additional seven amino acids that form an additional unique loop within the cofactor-binding cavity. Further studies are required to determine how these differences affect the enzymatic functions of the SDR.


Assuntos
Burkholderiaceae , Redutases-Desidrogenases de Cadeia Curta , Cristalografia por Raios X , Oxirredutases/química , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Especificidade por Substrato
11.
Sci Rep ; 11(1): 21664, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737367

RESUMO

Balamuthia mandrillaris, a pathogenic free-living amoeba, causes cutaneous skin lesions as well as granulomatous amoebic encephalitis, a 'brain-eating' disease. As with the other known pathogenic free-living amoebas (Naegleria fowleri and Acanthamoeba species), drug discovery efforts to combat Balamuthia infections of the central nervous system are sparse; few targets have been validated or characterized at the molecular level, and little is known about the biochemical pathways necessary for parasite survival. Current treatments of encephalitis due to B. mandrillaris lack efficacy, leading to case fatality rates above 90%. Using our recently published methodology to discover potential drugs against pathogenic amoebas, we screened a collection of 85 compounds with known antiparasitic activity and identified 59 compounds that impacted the growth of Balamuthia trophozoites at concentrations below 220 µM. Since there is no fully annotated genome or proteome of B. mandrillaris, we sequenced and assembled its transcriptome from a high-throughput RNA-sequencing (RNA-Seq) experiment and located the coding sequences of the genes potentially targeted by the growth inhibitors from our compound screens. We determined the sequence of 17 of these target genes and obtained expression clones for 15 that we validated by direct sequencing. These will be used in the future in combination with the identified hits in structure guided drug discovery campaigns to develop new approaches for the treatment of Balamuthia infections.


Assuntos
Balamuthia mandrillaris/genética , Desenho de Fármacos/métodos , Trofozoítos/genética , Acanthamoeba/genética , Amebíase/tratamento farmacológico , Amoeba/genética , Balamuthia mandrillaris/efeitos dos fármacos , Balamuthia mandrillaris/crescimento & desenvolvimento , Sequência de Bases , Encéfalo/patologia , Descoberta de Drogas/métodos , Encefalite/patologia , Expressão Gênica/genética , Naegleria fowleri/genética , Transcriptoma/genética , Trofozoítos/efeitos dos fármacos
12.
PLoS One ; 16(3): e0241738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33760815

RESUMO

Naegleria fowleri is a pathogenic, thermophilic, free-living amoeba which causes primary amebic meningoencephalitis (PAM). Penetrating the olfactory mucosa, the brain-eating amoeba travels along the olfactory nerves, burrowing through the cribriform plate to its destination: the brain's frontal lobes. The amoeba thrives in warm, freshwater environments, with peak infection rates in the summer months and has a mortality rate of approximately 97%. A major contributor to the pathogen's high mortality is the lack of sensitivity of N. fowleri to current drug therapies, even in the face of combination-drug therapy. To enable rational drug discovery and design efforts we have pursued protein production and crystallography-based structure determination efforts for likely drug targets from N. fowleri. The genes were selected if they had homology to drug targets listed in Drug Bank or were nominated by primary investigators engaged in N. fowleri research. In 2017, 178 N. fowleri protein targets were queued to the Seattle Structural Genomics Center of Infectious Disease (SSGCID) pipeline, and to date 89 soluble recombinant proteins and 19 unique target structures have been produced. Many of the new protein structures are potential drug targets and contain structural differences compared to their human homologs, which could allow for the development of pathogen-specific inhibitors. Five of the structures were analyzed in more detail, and four of five show promise that selective inhibitors of the active site could be found. The 19 solved crystal structures build a foundation for future work in combating this devastating disease by encouraging further investigation to stimulate drug discovery for this neglected pathogen.


Assuntos
Descoberta de Drogas , Naegleria fowleri/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Adenosil-Homocisteinase/antagonistas & inibidores , Adenosil-Homocisteinase/química , Adenosil-Homocisteinase/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Simulação de Dinâmica Molecular , Naegleria fowleri/genética , Fosfoglicerato Mutase/antagonistas & inibidores , Fosfoglicerato Mutase/química , Fosfoglicerato Mutase/metabolismo , Estrutura Quaternária de Proteína , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteoma , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
13.
Sci Rep ; 11(1): 4290, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619344

RESUMO

Rapid generation of diagnostics is paramount to understand epidemiology and to control the spread of emerging infectious diseases such as COVID-19. Computational methods to predict serodiagnostic epitopes that are specific for the pathogen could help accelerate the development of new diagnostics. A systematic survey of 27 SARS-CoV-2 proteins was conducted to assess whether existing B-cell epitope prediction methods, combined with comprehensive mining of sequence databases and structural data, could predict whether a particular protein would be suitable for serodiagnosis. Nine of the predictions were validated with recombinant SARS-CoV-2 proteins in the ELISA format using plasma and sera from patients with SARS-CoV-2 infection, and a further 11 predictions were compared to the recent literature. Results appeared to be in agreement with 12 of the predictions, in disagreement with 3, while a further 5 were deemed inconclusive. We showed that two of our top five candidates, the N-terminal fragment of the nucleoprotein and the receptor-binding domain of the spike protein, have the highest sensitivity and specificity and signal-to-noise ratio for detecting COVID-19 sera/plasma by ELISA. Mixing the two antigens together for coating ELISA plates led to a sensitivity of 94% (N = 80 samples from persons with RT-PCR confirmed SARS-CoV-2 infection), and a specificity of 97.2% (N = 106 control samples).


Assuntos
COVID-19/diagnóstico , COVID-19/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos de Linfócito B/imunologia , SARS-CoV-2/patogenicidade , Humanos , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/imunologia , Razão Sinal-Ruído
14.
Protein Sci ; 29(3): 768-778, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31930578

RESUMO

Neisseria gonorrhoeae (Ng) and Chlamydia trachomatis (Ct) are the most commonly reported sexually transmitted bacteria worldwide and usually present as co-infections. Increasing resistance of Ng to currently recommended dual therapy of azithromycin and ceftriaxone presents therapeutic challenges for syndromic management of Ng-Ct co-infections. Development of a safe, effective, and inexpensive dual therapy for Ng-Ct co-infections is an effective strategy for the global control and prevention of these two most prevalent bacterial sexually transmitted infections. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a validated drug target with two approved drugs for indications other than antibacterials. Nonetheless, any new drugs targeting GAPDH in Ng and Ct must be specific inhibitors of bacterial GAPDH that do not inhibit human GAPDH, and structural information of Ng and Ct GAPDH will aid in finding such selective inhibitors. Here, we report the X-ray crystal structures of Ng and Ct GAPDH. Analysis of the structures demonstrates significant differences in amino acid residues in the active sites of human GAPDH from those of the two bacterial enzymes suggesting design of compounds to selectively inhibit Ng and Ct is possible. We also describe an efficient in vitro assay of recombinant GAPDH enzyme activity amenable to high-throughput drug screening to aid in identifying inhibitory compounds and begin to address selectivity.


Assuntos
Chlamydia trachomatis/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/química , Neisseria gonorrhoeae/enzimologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Modelos Moleculares , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
15.
Protein Sci ; 29(3): 789-802, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31930600

RESUMO

Acinetobacter baumannii is well known for causing hospital-associated infections due in part to its intrinsic antibiotic resistance as well as its ability to remain viable on surfaces and resist cleaning agents. In a previous publication, A. baumannii strain AB5075 was studied by transposon mutagenesis and 438 essential gene candidates for growth on rich-medium were identified. The Seattle Structural Genomics Center for Infectious Disease entered 342 of these candidate essential genes into our pipeline for structure determination, in which 306 were successfully cloned into expression vectors, 192 were detectably expressed, 165 screened as soluble, 121 were purified, 52 crystalized, 30 provided diffraction data, and 29 structures were deposited in the Protein Data Bank. Here, we report these structures, compare them with human orthologs where applicable, and discuss their potential as drug targets for antibiotic development against A. baumannii.


Assuntos
Acinetobacter baumannii/química , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Genoma Bacteriano/efeitos dos fármacos , Genoma Bacteriano/genética , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Coproporfirinogênio Oxidase/química , Coproporfirinogênio Oxidase/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Metionina tRNA Ligase/química , Metionina tRNA Ligase/metabolismo , Modelos Moleculares , Conformação Proteica , Uroporfirinogênio Descarboxilase/química , Uroporfirinogênio Descarboxilase/metabolismo
16.
Protein Sci ; 29(3): 809-817, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31912584

RESUMO

Encephalitozoon cuniculi is a unicellular, obligate intracellular eukaryotic parasite in the Microsporidia family and one of the agents responsible for microsporidosis infections in humans. Like most Microsporidia, the genome of E. cuniculi is markedly reduced and the organism contains mitochondria-like organelles called mitosomes instead of mitochondria. Here we report the solution NMR structure for a protein physically associated with mitosome-like organelles in E. cuniculi, the 128-residue, adrenodoxin-like protein Ec-Adx (UniProt ID Q8SV19) in the [2Fe-2S] ferredoxin superfamily. Oxidized Ec-Adx contains a mixed four-strand ß-sheet, ß2-ß1-ß4-ß3 (↓↑↑↓), loosely encircled by three α-helices and two 310 -helices. This fold is similar to the structure observed in other adrenodoxin and adrenodoxin-like proteins except for the absence of a fifth anti-parallel ß-strand next to ß3 and the position of α3. Cross peaks are missing or cannot be unambiguously assigned for 20 amide resonances in the 1 H-15 N HSQC spectrum of Ec-Adx. These missing residues are clustered primarily in two regions, G48-V61 and L94-L98, containing the four cysteine residues predicted to ligate the paramagnetic [2Fe-2S] cluster. Missing amide resonances in 1 H-15 N HSQC spectra are detrimental to NMR-based solution structure calculations because 1 H-1 H NOE restraints are absent (glass half-empty) and this may account for the absent ß-strand (ß5) and the position of α3 in oxidized Ec-Adx. On the other hand, the missing amide resonances unambiguously identify the presence, and immediate environment, of the paramagnetic [2Fe-2S] cluster in oxidized Ec-Adx (glass half-full).


Assuntos
Encephalitozoon cuniculi/química , Ferredoxinas/química , Sequência de Aminoácidos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Estrutura Secundária de Proteína , Soluções
17.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 5): 294-299, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717997

RESUMO

Burkholderia thailandensis is often used as a model for more virulent members of this genus of proteobacteria that are highly antibiotic-resistant and are potential agents of biological warfare that are infective by inhalation. As part of ongoing efforts to identify potential targets for the development of rational therapeutics, the structures of enzymes that are absent in humans, including that of chorismate mutase from B. thailandensis, have been determined by the Seattle Structural Genomics Center for Infectious Disease. The high-resolution structure of chorismate mutase from B. thailandensis was determined in the monoclinic space group P21 with three homodimers per asymmetric unit. The overall structure of each protomer has the prototypical AroQγ topology and shares conserved binding-cavity residues with other chorismate mutases, including those with which it has no appreciable sequence identity.


Assuntos
Burkholderia/enzimologia , Burkholderia/genética , Corismato Mutase/química , Corismato Mutase/genética , Sequência de Aminoácidos , Cristalização/métodos , Estrutura Secundária de Proteína
18.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 4): 187-192, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29633965

RESUMO

The bacterium Burkholderia phymatum is a promiscuous symbiotic nitrogen-fixating bacterium that belongs to one of the largest groups of Betaproteobacteria. Other Burkholderia species are known to cause disease in plants and animals, and some are potential agents for biological warfare. Structural genomics efforts include characterizing the structures of enzymes from pathways that can be targeted for drug development. As part of these efforts, chorismate mutase from B. phymatum was produced and crystallized, and a 1.95 Šresolution structure is reported. This enzyme shares less than 33% sequence identity with other homologs of known structure. There are two classes of chorismate mutase: AroQ and AroH. The bacterial subclass AroQγ has reported roles in virulence. Chorismate mutase from B. phymatum has the prototypical AroQγ topology and retains the characteristic chorismate mutase active site. This suggests that substrate-based chorismate mutase inhibitors will not be specific and are likely to affect beneficial bacteria such as B. phymatum.


Assuntos
Burkholderiaceae/enzimologia , Corismato Mutase/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Homologia de Sequência
19.
Pathog Dis ; 74(6)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27307105

RESUMO

Many prokaryotes utilize type IV secretion systems (T4SSs) to translocate substrates (e.g. nucleoprotein, DNA, protein) across the cell envelope, and/or to elaborate surface structures (i.e. pili or adhesins). Among eight distinct T4SS classes, P-T4SSs are typified by the Agrobacterium tumefaciens vir T4SS, which is comprised of 12 scaffold components (VirB1-VirB11, VirD4). While most P-T4SSs include all 12 Vir proteins, some differ from the vir archetype by either containing additional scaffold components not analogous to Vir proteins or lacking one or more of the Vir proteins. In a special case, the Rickettsiales vir homolog (rvh) P-T4SS comprises unprecedented gene family expansion. rvh contains three families of gene duplications (rvhB9, rvhB8, rvhB4): RvhB9,8,4-I are conserved relative to equivalents in other P-T4SSs, while RvhB9,8,4-II have evolved atypical features that deviate substantially from other homologs. Furthermore, rvh contains five VirB6-like genes (rvhB6a-e), which are tandemly arrayed and contain large N- and C-terminal extensions. Our work herein focuses on the complexity underpinned by rvh gene family expansion. Furthermore, we describe an RvhB10 insertion, which occurs in a region that forms the T4SS pore. The significance of these curious properties to rvh structure and function is evaluated, shedding light on a highly complex T4SS.


Assuntos
Duplicação Gênica , Genes Bacterianos , Família Multigênica , Rickettsia/fisiologia , Sistemas de Secreção Tipo IV , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Modelos Moleculares , Mutagênese Insercional , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico , Infecções por Rickettsia/microbiologia
20.
J Biomol Screen ; 21(7): 695-700, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27146385

RESUMO

New and improved drugs against tuberculosis are urgently needed as multi-drug-resistant forms of the disease become more prevalent. Mycobacterium tuberculosis cytidylate kinase is an attractive target for screening due to its essentiality and different substrate specificity to the human orthologue. However, we selected the Mycobacterium smegmatis cytidylate kinase for screening because of the availability of high-resolution X-ray crystallographic data defining its structure and the high likelihood of active site structural similarity to the M. tuberculosis orthologue. We report the development and implementation of a high-throughput luciferase-based activity assay and screening of 19,920 compounds derived from small-molecule libraries and an in silico screen predicting likely inhibitors of the cytidylate kinase enzyme. Hit validation included a counterscreen for luciferase inhibitors that would result in false positives in the initial screen. Results of this counterscreen ruled out all of the putative cytidylate kinase inhibitors identified in the initial screening, leaving no compounds as candidates for drug development. Although a negative result, this study indicates that this important drug target may in fact be undruggable and serve as a warning for future investigations.


Assuntos
Inibidores Enzimáticos/isolamento & purificação , Ensaios de Triagem em Larga Escala/métodos , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Tuberculose/tratamento farmacológico , Cristalografia por Raios X , Inibidores Enzimáticos/uso terapêutico , Humanos , Terapia de Alvo Molecular , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Núcleosídeo-Fosfato Quinase/genética , Bibliotecas de Moléculas Pequenas/análise , Especificidade por Substrato , Tuberculose/enzimologia , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...