Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anal Toxicol ; 19(6): 504-10, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8926746

RESUMO

We developed a rapid, sensitive, and simple-to-use multi-analyte diagnostic device for the detection of drugs of abuse in urine: the ONTRAK TESTCUP. No sample or reagent handling is necessary with this device, and the device also serves as the sample collection cup. The TESTCUP contains immunochromatographic reagents that qualitatively and simultaneously detect the presence of benzoylecgonine, morphine, and cannabinoids (delta9-tetrahydrocannabinol [THC] in urine. It is based on the principle of competition between the drug in the sample and membrane- immobilized drug conjugate for antidrug antibodies coated on blue-dyed microparticles. Each drug assay has its own strip, which contains an antibody specific to benzoylecgonine, morphine, or THC. A sample is collected in the TESTCUP, a lid is placed on it, and a chamber at the top of the cup is filled with urine by inverting the cup for 5 s. Urine proceeds down immunochromatographic strips, and the assays are developed. In approximately 3-5 min, the Test Valid bars appear, a decal is removed from the detection window, and the results are interpreted. The appearance of a colored bar at the detection window for each drug indicates a negative result. The absence of color in any specific drug detection window indicates a positive result for that drug. If a positive result is obtained, the same device (cup) can be used for gas chromatographic-mass spectrometric (GC-MS) confirmation. When the precision of the TESTCUP was evaluated, the results obtained were as follows: for urine controls containing drug at 50% of its cutoff concentration, the results were greater than or equal to 96, 98, and 96% negative for benzoylecgonine, morphine, and THC, respectively; for urine controls containing drug at 120% of its cutoff concentration, the results were greater than or equal to 97, 100, and 98% positive for benzoylecgonine, morphine, and THC, respectively. The correlations of clinical sample results using the TESTCUP versus results by GC-MS and the ONTRAK and OnLine assays were assessed. There was 100% agreement between samples prescreened positive by GC-MS and positive by TESTCUP for all three assays. There was 100% agreement between TESTCUP and ONTRAK results and between TESTCUP and OnLine results when testing clinical samples positive and negative for cocaine (benzoylecgonine) or THC. Greater than 99% agreement was observed between TESTCUP and ONTRAK results and between TESTCUP and OnLine results when testing clinical samples positive and negative for morphine. The cross-reactivity of the TESTCUP assay to related drugs and drug metabolites was also determined, and the results were similar to those of the ONTRAK and OnLine assays.


Assuntos
Drogas Ilícitas/urina , Detecção do Abuso de Substâncias/instrumentação , Detecção do Abuso de Substâncias/métodos , Cocaína/análogos & derivados , Cocaína/análise , Cocaína/urina , Dronabinol/análise , Dronabinol/urina , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Drogas Ilícitas/análise , Imunoensaio , Morfina/análise , Morfina/urina , Sistemas On-Line/normas , Padrões de Referência , Reprodutibilidade dos Testes
2.
J Biol Chem ; 264(7): 3859-63, 1989 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-2537294

RESUMO

Muscarinic cholinergic agonists such as acetylcholine attenuate phosphorylation of phospholamban induced by agents that activate cAMP-dependent protein kinase. However, cAMP accumulation is variably affected or only slightly reduced; thus, the choline ester might produce effects in addition to inhibition of adenylate cyclase. We hypothesized that acetylcholine might regulate a phosphatase in mammalina myocardium. Exposure of Langendoff-perfused guinea pig ventricles to isoproterenol (10 nM) for 45 s increased phosphatase inhibitor-1 activity 2-fold. Co-administration of acetylcholine (100 nM) antagonized the effect of isoproterenol, and atropine (1 microM) blocked the effect of acetylcholine. Forskolin (1 microM) caused a 3-fold increase in inhibitor-1 activity, and acetylcholine markedly attenuated the effect of forskolin. However, acetylcholine did not lower cAMP levels in the same tissues. Both isoproterenol and forskolin reduced the type 1 phosphatase activity intrinsic to sarcoplasmic reticulum by 25-50%, using [32P]phosphorylase a or 32P-labeled membrane vesicles as a substrate for the phosphatase. Co-administration of acetylcholine markedly attenuated these effects of isoproterenol and forskolin. Acetylcholine alone caused a 50% increase in type 1 phosphatase activity. We concluded that inhibitor-1 and type 1 phosphatase can be regulated in intact cardiac muscle by agents that increase intracellular cAMP and by acetylcholine.


Assuntos
Acetilcolina/farmacologia , Miocárdio/enzimologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/metabolismo , Animais , Colforsina/farmacologia , Cobaias , Técnicas In Vitro , Isoproterenol/farmacologia , Receptores Muscarínicos/fisiologia , Retículo Sarcoplasmático/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...