Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000659

RESUMO

Ecosystems are negatively impacted by pharmaceutical-contaminated water in different ways. In this work, a new biosorbent obtained by immobilizing Lactococcus lactis in a calcium alginate matrix was developed for the removal of pharmaceuticals from aqueous solutions. Ethacridine lactate (EL) was selected as the target drug. Lactococcus Lactis biomass was chosen for the biosorbent synthesis for two reasons: (i) the microbial biomass used in the food industry allows the development of a low-cost biosorbent from available and renewable materials, and (ii) there is no literature mentioning the use of Lactococcus Lactis biomass immobilized in natural polymers as a biosorbent for the removal of pharmaceuticals. The characterization of the synthesized biosorbent named 5% LLA was performed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. Additionally, particle size and the point of zero charge were established. Batch biosorption investigations showed that using 5% LLA at an initial pH of 3.0 and a biosorbent dose of 2 g/L resulted in up to 80% EL removal efficiency for all EL initial concentrations (20-60 mg/L). Four equilibrium isotherms, given in the order of Redlich-Peterson > Freundlich > Hill > Temkin, are particularly relevant for describing the experimental data for EL biosorption on the 5% LLA biosorbent using correlation coefficient values. Kinetic parameters were determined using kinetic models such as pseudo-first-order, pseudo-second-order, Elovich, Avrami and Weber-Morris. The pseudo-second-order kinetics model provides the greatest fit among the evaluated equations, with correlation coefficients greater than 0.99. According to the study's findings, the developed biocomposite is a potentially useful material for the removal of pharmaceuticals from aqueous matrices.

2.
Polymers (Basel) ; 15(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37447569

RESUMO

Pharmaceuticals are acknowledged as emerging contaminants in water resources. The concentration of pharmaceutical compounds in the environment has increased due to the rapid development of the pharmaceutical industry, the increasing use of human and veterinary drugs, and the ineffectiveness of conventional technologies to remove pharmaceutical compounds from water. The application of biomaterials derived from renewable resources in emerging pollutant removal techniques constitutes a new research direction in the field. In this context, the article reviews the literature on pharmaceutical removal from water sources using microbial biomass and natural polymers in biosorption or biodegradation processes. Microorganisms, in their active or inactive form, natural polymers and biocomposites based on inorganic materials, as well as microbial biomass immobilized or encapsulated in polymer matrix, were analyzed in this work. The review examines the benefits, limitations, and drawbacks of employing these biomaterials, as well as the prospects for future research and industrial implementation. From these points of view, current trends in the field are clearly reviewed. Finally, this study demonstrated how biocomposites made of natural polymers and microbial biomass suggest a viable adsorbent biomaterial for reducing environmental pollution that is also efficient, inexpensive, and sustainable.

3.
Polymers (Basel) ; 14(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36015645

RESUMO

Biosorbtive removal of the antibacterial drug, ethacridine lactate (EL), from aqueous solutions was investigated using as biosorbent Saccharomyces pastorianus residual biomass immobilized in calcium alginate. The aim of this work was to optimize the biosorption process and to evaluate the biosorption capacity in the batch system. Response surface methodology, based on a Box-Behnken design, was used to optimize the EL biosorption parameters. Two response functions (removal efficiency and biosorption capacity) were maximized dependent on three factors: initial concentration of EL solution, contact time, and agitation speed. The highest values for the studied functions (89.49%, 26.04 mg/g) were obtained in the following operational conditions: EL initial concentration: 59.73 mg/L; contact time: 94.26 min; agitation speed: 297.57 rpm. A number of nonlinear kinetic models, including pseudo-first-order, pseudo-second-order, Elovich, and Avrami, were utilized to validate the biosorption kinetic behavior of EL in the optimized conditions. The kinetic data fitted the pseudo-first-order and Avrami models. The experimental results demonstrated that the optimized parameters (especially the agitation speed) significantly affect biosorption and should be considered important in such studies.

4.
Polymers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890630

RESUMO

Two types of biosorbents, based on Saccharomyces pastorianus immobilized in calcium alginate, were studied for the removal of pharmaceuticals from aqueous solutions. Synthetized biocomposite materials were characterized chemically and morphologically, both before and after simulated biosorption. Ethacridine lactate (EL) was chosen as a target molecule. The process performance was interpreted as a function of initial solution pH, biosorbent dose, and initial pharmaceutical concentration. The results exhibited that the removal efficiencies were superior to 90% for both biosorbents, at the initial pH value of 4.0 and biosorbent dose of 2 g/L for all EL initial concentrations tested. Freundlich, Temkin, Hill, Redlich-Peterson, Sips, and Toth isotherms were used to describe the experimental results. The kinetic data were analyzed using kinetic models, such as pseudo-first order, pseudo-second order, Elovich, and Avrami, to determine the kinetic parameters and describe the transport mechanisms of EL from aqueous solution onto biosorbents. Among the tested equations, the best fit is ensured by the pseudo-second-order kinetics model for both biosorbents, with the correlation coefficient having values higher than 0.996. The many potential advantages and good biosorptive capacity of Saccharomyces pastorianus biomass immobilized in calcium alginate recommend these types of biocomposite materials for the removal of pharmaceuticals from aqueous solutions.

5.
Materials (Basel) ; 15(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806780

RESUMO

In this study, ethacridine lactate removal from aqueous solution using a biosorbent material based on residual microbial biomass and natural polymers in fixed-bed continuous column was investigated. Composite beads of Saccharomyces pastorianus residual biomass and calcium alginate were obtained by immobilization technique. The prepared biosorbent was characterized by Fourier transformed infrared spectroscopy, scanning electron microscopy, and analysis of point of zero charge value. Then, laboratory-scale experiments by fixed-bed column biosorption were conducted in continuous system. To this purpose, the column bed high (5 cm; 7.5 cm), initial pollutant concentration (20 mg/L; 40 mg/L), and solution flow through the column (0.6 mL/min; 1.5 mL/min) were considered the main parameters. Recorded breakthrough curves suggest that lower flow rates, greater bed heights, and a lower concentration of ethacridine lactate led to an increased biosorption of the target compound. The biosorption dynamic was investigated by nonlinear regression analysis using the Adams-Bohart, Yoon-Nelson, Clark, and Yan mathematical models. Conclusively, our research highlights, firstly, that the obtained biosorbent material has the required properties for retaining the ethacridine lactate from aqueous solution in continuous system. Secondly, it emphasizes that the modeling approach reveals an acceptable fitting with the experimental data for the Yoon-Nelson, Clark, and Yan models.

6.
Polymers (Basel) ; 14(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35012191

RESUMO

Pharmaceuticals are recognized as emerging water microcontaminants that have been reported in several aquatic environments worldwide; therefore, the elimination of these pollutants is a global challenge. This study aimed to develop a biosorbent based on Saccharomyces pastorianus residual biomass encapsulated in a calcium alginate matrix and to evaluate its biosorption performance to remove Ethacridine Lactate (EL) from aqueous solutions. Firstly, the synthesis and characterization of biosorbent has been carried out. Then, the impact of main parameters on biosorption process were investigated by batch experiments. Finally, the kinetics behavior and equilibrium isotherms were evaluated. The resulted beads have an irregular and elongated shape with about 1.89 mm ± 0.13 mm in size with a homogeneous structure. The best removal efficiency for EL of over 85% was obtained at acidic pH 2 and 25 °C for 50 mg/L initial concentration and 2 g/L biosorbent dose. The pseudo-second-order and intraparticle diffusion kinetics describe the biosorption process. The maximum calculated biosorption capacity was 21.39 mg/g similar to that recorded experimentally. The equilibrium biosorption data were a good fit for Freundlich and Dubinin-Radushkevich isotherms. Our findings reveal that the low cost and eco-friendly obtained biosorbent can be easily synthesized and suitable to remove Ethacridine Lactate from water matrices.

7.
Materials (Basel) ; 14(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500899

RESUMO

Pharmaceuticals and dyes are a very important part of the nonbiodegradable or hard biodegradable substances present in wastewater. Microorganisms are already known to be effective biosorbents, but the use of free microbial cells involves difficulties in their separation from effluents and limits their application in wastewater treatment. Thus, this study aimed to develop biosorbents by immobilizing Saccharomyces cerevisiae, Saccharomyces pastorianus and Saccharomyces pastorianus residual biomass on natural polymers (alginate and chitosan) and to evaluate the biosorptive potential for removal of pharmaceuticals and dyes from water. Six types of biosorbents were synthesized and characterized by Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy techniques and their biosorptive capacities for three drugs (cephalexin, rifampicin, ethacridine lactate) and two dyes (orange II and indigo carmine) were evaluated. The obtained results show that the removal efficiency depends on the polymer type used for the immobilization. In case of alginate the removal efficiency is between 40.05% and 96.41% for drugs and between 27.83% and 58.29% for dyes, while in the case of chitosan it is between 40.83% and 77.92% for drugs and between 17.17% and 44.77% for dyes. In general, the synthesized biosorbents proved to be promising for the removal of drugs and dyes from aqueous solutions.

8.
Materials (Basel) ; 14(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34443250

RESUMO

Cephalexin (CPX) is recognized as a water pollutant, and it has been listed in a number of countries with a risk factor greater than one. Herein, the present work focused on the synthesis, characterization and biosorption capacity evaluation of Saccharomyces cerevisiae immobilized in calcium alginate as a biosorbent to remove CPX from aqueous solutions. Biosorbent was characterized by SEM and FTIR techniques. Batch biosorption experiments were conducted in order to evaluate the effect of the initial pH, biosorbent dose and CPX initial concentration. The removal efficiency, in considered optimal conditions (pH = 4, CPX initial concentration = 30 mg/L, biosorbent dose = 1 g/L) was 86.23%. CPX biosorption was found to follow the pseudo-second-order kinetics. The equilibrium biosorption data were a good fit for the Langmuir model with correlation coefficient of 0.9814 and maximum biosorption capacity was 94.34 mg/g. This study showed that the synthesized biosorbent by immobilization technique is a low-cost one, easy to obtain and handle, eco-friendly, with high feasibility to remove CPX antibiotic from aqueous solution. The findings of this study indicate that the biosorbents based on microorganisms immobilized on natural polymers have the potential to be applied in the treatment of wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...