Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 11(24): 10290-10297, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33226814

RESUMO

Graphene nanoribbons (GNRs) and their derivatives attract growing attention due to their excellent electronic and magnetic properties as well as the fine-tuning of such properties that can be obtained by heteroatom substitution and/or edge morphology modification. Here, we introduce graphene nanoribbon derivatives-organometallic hybrids with gold atoms incorporated between the carbon skeleton and side Cl atoms. We show that narrow chlorinated 5-AGNROHs (armchair graphene nanoribbon organometallic hybrids) can be fabricated by on-surface polymerization with omission of the cyclodehydrogenation reaction by a proper choice of tailored molecular precursors. Finally, we describe a route to exchange chlorine atoms connected through gold atoms to the carbon skeleton by hydrogen atom treatment. This is achieved directly on the surface, resulting in perfect unsubstituted hydrogen-terminated GNRs. This will be beneficial in the molecule on-surface processing when the preparation of final unsubstituted hydrocarbon structure is desired.

2.
Beilstein J Nanotechnol ; 11: 821-828, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32551207

RESUMO

The adsorption behavior of tin phthalocyanine (SnPc) molecules on rutile TiO2(110) was studied by scanning tunneling microscopy (STM). Low-temperature STM measurements of single molecules reveal the coexistence of two conformations of molecules on the TiO2 surface. Density functional theory-based simulations (DFT) indicate that the difference originates from the position of the tin atom protruding from the molecule plane. The irreversible switching of Sn-up molecules into the Sn-down conformation was observed either after sample annealing at 200 °C or as a result of tip-induced manipulation. Room-temperature measurements conducted for a coverage of close to a monolayer showed no tendency for molecular arrangement.

3.
ACS Nano ; 11(9): 9321-9329, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28817255

RESUMO

The on-surface synthesis of nonacene has been accomplished by dehydrogenation of an air-stable partially saturated precursor, which could be aromatized by using a combined scanning tunneling and atomic force microscope as well as by on-surface annealing. This transformation allowed the in-detail analysis of the electronic properties of nonacene molecules physisorbed on Au(111) by scanning tunneling spectroscopy measurements. The spatial mapping of molecular orbitals was corroborated by density functional theory calculations. Furthermore, the thermally induced dehydrogenation uncovered the isomerization of intermediate dihydrononacene species, which allowed for their in-depth structural and electronic characterization.

4.
Beilstein J Nanotechnol ; 8: 99-107, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28144569

RESUMO

Zn(II)phthalocyanine molecules (ZnPc) were thermally deposited on a rutile TiO2(011) surface and on Zn(II)meso-tetraphenylporphyrin (ZnTPP) wetting layers at room temperature and after elevated temperature thermal processing. The molecular homo- and heterostructures were characterized by high-resolution scanning tunneling microscopy (STM) at room temperature and their geometrical arrangement and degree of ordering are compared with the previously studied copper phthalocyanine (CuPc) and ZnTPP heterostructures. It was found that the central metal atom may play some role in ordering and growth of phthalocyanine/ZnTPP heterostructures, causing differences in stability of upright standing ZnPc versus CuPc molecular chains at given thermal annealing conditions.

5.
Phys Chem Chem Phys ; 18(28): 19309-17, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27375264

RESUMO

Dangling bond (DB) arrays on Si(001):H and Ge(001):H surfaces can be patterned with atomic precision and they exhibit complex and rich physics making them interesting from both technological and fundamental perspectives. But their complex behavior often makes scanning tunneling microscopy (STM) images difficult to interpret and simulate. Recently it was shown that low-temperature imaging of unoccupied states of an unpassivated dimer on Ge(001):H results in a symmetric butterfly-like STM pattern, despite the fact that the equilibrium dimer configuration is expected to be a bistable, buckled geometry. Here, based on a thorough characterization of the low-bias switching events on Ge(001):H, we propose a new imaging model featuring a dynamical two-state rate equation. On both Si(001):H and Ge(001):H, this model allows us to reproduce the features of the observed symmetric empty-state images which strongly corroborates the idea that the patterns arise due to fast switching events and provides an insight into the relationship between the tunneling current and switching rates. We envision that our new imaging model can be applied to simulate other bistable systems where fluctuations arise from transiently charged electronic states.

6.
Beilstein J Nanotechnol ; 7: 1642-1653, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144513

RESUMO

Titanium dioxide, or titania, sensitized with organic dyes is a very attractive platform for photovoltaic applications. In this context, the knowledge of properties of the titania-sensitizer junction is essential for designing efficient devices. Consequently, studies on the adsorption of organic dyes on titania surfaces and on the influence of the adsorption geometry on the energy level alignment between the substrate and an organic adsorbate are necessary. The method of choice for investigating the local environment of a single dye molecule is high-resolution scanning probe microscopy. Microscopic results combined with the outcome of common spectroscopic methods provide a better understanding of the mechanism taking place at the titania-sensitizer interface. In the following paper, we review the recent scanning probe microscopic research of a certain group of molecular assemblies on rutile titania surfaces as it pertains to dye-sensitized solar cell applications. We focus on experiments on adsorption of three types of prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), phtalocyanines and porphyrins. Two interesting heteromolecular systems comprising molecules that are aligned with the given review are discussed as well.

7.
J Chem Phys ; 143(22): 224702, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26671391

RESUMO

Molecular heterostructures are formed from meso-tetraphenyl porphyrins-Zn(II) (ZnTPP) and Cu(II)-phthalocyanines (CuPc) on the rutile TiO2(011) surface. We demonstrate that ZnTPP molecules form a quasi-ordered wetting layer with flat-lying molecules, which provides the support for growth of islands comprised of upright CuPc molecules. The incorporation of the ZnTPP layer and the growth of heterostructures increase the stability of the system and allow for room temperature scanning tunneling microscopy (STM) measurements, which is contrasted with unstable STM probing of only CuPc species on TiO2. We demonstrate that within the CuPc layer the molecules arrange in two phases and we identify molecular dimers as basic building blocks of the dominant structural phase.

8.
J Chem Phys ; 143(9): 094202, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26342363

RESUMO

Functionalized materials consisting of inorganic substrates with organic adsorbates play an increasing role in emerging technologies like molecular electronics or hybrid photovoltaics. For such applications, the adsorption geometry of the molecules under operating conditions, e.g., ambient temperature, is crucial because it influences the electronic properties of the interface, which in turn determine the device performance. So far detailed experimental characterization of adsorbates at room temperature has mainly been done using a combination of complementary methods like photoelectron spectroscopy together with scanning tunneling microscopy. However, this approach is limited to ensembles of adsorbates. In this paper, we show that the characterization of individual molecules at room temperature, comprising the determination of the adsorption configuration and the electrostatic interaction with the surface, can be achieved experimentally by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We demonstrate this by identifying two different adsorption configurations of isolated copper(ii) meso-tetra (4-carboxyphenyl) porphyrin (Cu-TCPP) on rutile TiO2 (110) in ultra-high vacuum. The local contact potential difference measured by KPFM indicates an interfacial dipole due to electron transfer from the Cu-TCPP to the TiO2. The experimental results are verified by state-of-the-art first principles calculations. We note that the improvement of the AFM resolution, achieved in this work, is crucial for such accurate calculations. Therefore, high resolution AFM at room temperature is promising for significantly promoting the understanding of molecular adsorption.

9.
ACS Nano ; 7(11): 10105-11, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24148187

RESUMO

Fabrication of single-molecule logic devices requires controlled manipulation of molecular states with atomic-scale precision. Tuning molecule-substrate coupling is achieved here by the reversible attachment of a prototypical planar conjugated organic molecule to dangling bonds on the surface of a hydrogenated semiconductor. We show that the ground electronic state resonance of a Y-shaped polyaromatic molecule physisorbed on a defect-free area of a fully hydrogenated surface cannot be observed by scanning tunneling microscopy (STM) measurements because it is decoupled from the Ge bulk states by the hydrogen-passivated surface. The state can be accessed by STM only if the molecule is contacted with the substrate by a dangling bond dimer. The reversibility of the attachment processes will be advantageous in the construction of surface atomic-scale circuits composed of single-molecule devices interconnected by the surface dangling bond wires.

11.
Phys Rev Lett ; 110(20): 203203, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25167406

RESUMO

We perform bimodal atomic force microscopy measurements on a Br-doped NaCl (001) surface to investigate the mechanisms behind frequency shift and energy dissipation contrasts. The peculiar pattern of the dissipated energy in the torsional channel, related to frictional processes, is increased at the positions of Br impurities, otherwise indistinguishable from Cl ions in the other measured channels. Our simulations reveal how the energy dissipates by the rearrangement of the tip apex and how the process is ultimately governed by lateral forces. Even the slightest change in lateral forces, induced by the presence of a Br impurity, is enough to trigger the apex reconstruction more often, thus increasing the dissipation contrast; the predicted dissipation pattern and magnitude are in good quantitative agreement with the measurements.

12.
Nanotechnology ; 23(4): 045705, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22222632

RESUMO

Non-contact atomic force microscopy is used to measure the 3D force field on a dense-packed Cu(111) surface. An unexpected image contrast reversal is observed as the tip is moved towards the surface, with atoms appearing first as bright spots, whereas hollow and bridge sites turn bright at smaller tip-sample distances. Computer modeling is used to elucidate the nature of the image contrast. We find that the contrast reversal is essentially a geometrical effect, which, unlike in gold, is observable in Cu due to an unusually large stability of the tip-sample junction over large distances.

13.
Small ; 7(9): 1264-70, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21485005

RESUMO

Modification and functionalization of the atomic-scale structure of insulating surfaces is fundamental to catalysis, self-assembly, and single-molecule technologies. Specially designed syn-5,10,15-tris(4-cyanophenylmethyl)truxene molecules can reshape features on an ionic KBr (001) surface. Atomic force microscopy images demonstrate that both KBr monolayer islands and pits can reshape from rectangular to round structures, a process which is directly facilitated by molecular adsorption. Simulations reveal that the mechanism of the surface reconstruction consists of collective atomic hops of ions on the step edges of the islands and pits, which correlate with molecular motion. The energy barriers for individual processes are reduced by the presence of the adsorbed molecules, which cause surface structural changes. These results show how appropriately designed organic molecules can modify surface morphology on insulating surfaces. Such strongly adsorbed molecules can also serve as anchoring sites for building new nanostructures on inert insulating surfaces.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Brometos/química , Compostos de Potássio/química
14.
ACS Nano ; 4(6): 3429-39, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20499857

RESUMO

In this work, we have studied the adsorption and diffusion of large functionalized organic molecules on an insulating ionic surface at room temperature using a noncontact atomic force microscope (NC-AFM) and theoretical modeling. Custom designed syn-5,10,15-tris(4-cyanophenylmethyl)truxene molecules are adsorbed onto the nanoscale structured KBr(001) surface at low coverages and imaged with atomic and molecular resolution with the NC-AFM. The molecules are observed rapidly diffusing along the perfect monolayer step edges and immobilized at monolayer kink sites. Extensive atomistic simulations elucidate the mechanisms of adsorption and diffusion of the molecule on the different surface features. The results of this study suggest methods of controlling the diffusion of adsorbates on insulating and nanostructured surfaces.


Assuntos
Cristalização/métodos , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Compostos Policíclicos/química , Adsorção , Simulação por Computador , Difusão , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
15.
Chemphyschem ; 10(12): 2026-33, 2009 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-19472264

RESUMO

The adsorption of individual Violet Lander molecules self-assembled on the c(8x2) reconstructed InSb(001) surface in its native form and on the surface passivated with one to three monolayers of KBr is investigated by means of low-temperature scanning tunneling microscopy (STM). Preferred adsorption sites of the molecules are found on flat terraces as well as at atomic step edges. For molecules immobilized on flat terraces, several different conformations are identified from STM images acquired with submolecular resolution and are explained by the rotation of the 3,5-di-tert-butylphenyl groups around sigma bonds, which allows adjustment of the molecular geometry to the anisotropic substrate structure. Formation of ordered molecular chains is found at steps running along substrate reconstruction rows, whereas at the steps oriented perpendicularly no intermolecular ordering is recorded. It is also shown that the molecules deposited at two or more monolayers of the epitaxial KBr spacer do not have any stable adsorption sites recorded with STM. Prospects for the manipulation of single molecules by using the STM tip on highly anisotropic substrates are also explored, and demonstrate the feasibility of controlled lateral displacement in all directions.

16.
Phys Rev Lett ; 103(22): 220801, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-20366084

RESUMO

Judiciously matched experiments, calculations, and theory demonstrate that a higher sensitivity to short-range interactions and, consequently, improved resolution on the atomic scale can be achieved by bimodal noncontact dynamic force microscopy. The combination of sub-Angström tip oscillation at the second flexural resonance of a commercially available silicon cantilever with the commonly used large amplitude oscillation at the fundamental resonance frequency enables this performance improvement while avoiding potentially damaging jump-to-contact instabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...