Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3366, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684678

RESUMO

Autologous skin grafting is a standard treatment for skin defects such as burns. No artificial skin substitutes are functionally equivalent to autologous skin grafts. The cultured epidermis lacks the dermis and does not engraft deep wounds. Although reconstituted skin, which consists of cultured epidermal cells on a synthetic dermal substitute, can engraft deep wounds, it requires the wound bed to be well-vascularized and lacks skin appendages. In this study, we successfully generate complete skin grafts with pluripotent stem cell-derived epidermis with appendages on p63 knockout embryos' dermis. Donor pluripotent stem cell-derived keratinocytes encroach the embryos' dermis by eliminating p63 knockout keratinocytes based on cell-extracellular matrix adhesion mediated cell competition. Although the chimeric skin contains allogenic dermis, it is engraftable as long as autologous grafts. Furthermore, we could generate semi-humanized skin segments by human keratinocytes injection into the amnionic cavity of p63 knockout mice embryos. Niche encroachment opens the possibility of human skin graft production in livestock animals.


Assuntos
Derme , Queratinócitos , Camundongos Knockout , Transplante de Pele , Animais , Transplante de Pele/métodos , Queratinócitos/citologia , Queratinócitos/transplante , Humanos , Derme/citologia , Derme/transplante , Camundongos , Epiderme/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/transplante , Pele Artificial , Células Epidérmicas/transplante , Células Epidérmicas/citologia , Matriz Extracelular/metabolismo , Pele/citologia
2.
Nat Biotechnol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589662

RESUMO

CRISPR-Cas9 paired with adeno-associated virus serotype 6 (AAV6) is among the most efficient tools for producing targeted gene knockins. Here, we report that this system can lead to frequent concatemeric insertions of the viral vector genome at the target site that are difficult to detect. Such errors can cause adverse and unreliable phenotypes that are antithetical to the goal of precision genome engineering. The concatemeric knockins occurred regardless of locus, vector concentration, cell line or cell type, including human pluripotent and hematopoietic stem cells. Although these highly abundant errors were found in more than half of the edited cells, they could not be readily detected by common analytical methods. We describe strategies to detect and thoroughly characterize the concatemeric viral vector insertions, and we highlight analytical pitfalls that mask their prevalence. We then describe strategies to prevent the concatemeric inserts by cutting the vector genome after transduction. This approach is compatible with established gene editing pipelines, enabling robust genetic knockins that are safer, more reliable and more reproducible.

3.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260654

RESUMO

A multitude of tools now exist that allow us to precisely manipulate the human genome in a myriad of different ways. However, successful delivery of these tools to the cells of human patients remains a major barrier to their clinical implementation. Here we introduce a new cellular approach for in vivo genetic engineering, Secreted Particle Information Transfer (SPIT) that utilizes human cells as delivery vectors for in vivo genetic engineering. We demonstrate the application of SPIT for cell-cell delivery of Cre recombinase and CRISPR-Cas9 enzymes, we show that genetic logic can be incorporated into SPIT and present the first demonstration of human cells as a delivery platform for in vivo genetic engineering in immunocompetent mice. We successfully applied SPIT to genetically modify multiple organs and tissue stem cells in vivo including the liver, spleen, intestines, peripheral blood, and bone marrow. We anticipate that by harnessing the large packaging capacity of a human cell's nucleus, the ability of human cells to engraft into patients' long term and the capacity of human cells for complex genetic programming, that SPIT will become a paradigm shifting approach for in vivo genetic engineering.

4.
J Reprod Dev ; 69(1): 48-52, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36529517

RESUMO

We examined various methods to enhance the accessibility of intracytoplasmic sperm injection (ICSI) technology to more users by making the technique easier, more efficient, and practical. First, the methods for artificially removing the mouse sperm tail were evaluated. Trypsin treatment was found to efficiently remove the sperm tails. The resultant sperm cells had a lower oocyte activation capacity; however, the use of activated oocytes resulted in the same fecundity as that of fresh, untreated sperm. Pre-activated oocytes were more resistant to physical damage, showed higher survival rates, and required less time per injection. Testing this method in rats yielded similar results, although the oocyte activation method was different. Remarkably, this method resulted in higher birth rates of rat progeny than with conventional methods of rat ICSI. Our method thereby streamlines mouse and rat ICSI, making it more accessible to laboratories across many disciplines.


Assuntos
Injeções de Esperma Intracitoplásmicas , Cauda do Espermatozoide , Camundongos , Masculino , Ratos , Animais , Injeções de Esperma Intracitoplásmicas/métodos , Tripsina , Sêmen , Espermatozoides/fisiologia , Oócitos
5.
Cell Rep ; 40(9): 111264, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044843

RESUMO

As our closest living relatives, non-human primates uniquely enable explorations of human health, disease, development, and evolution. Considerable effort has thus been devoted to generating induced pluripotent stem cells (iPSCs) from multiple non-human primate species. Here, we establish improved culture methods for chimpanzee (Pan troglodytes) and pig-tailed macaque (Macaca nemestrina) iPSCs. Such iPSCs spontaneously differentiate in conventional culture conditions, but can be readily propagated by inhibiting endogenous WNT signaling. As a unique functional test of these iPSCs, we injected them into the pre-implantation embryos of another non-human species, rhesus macaques (Macaca mulatta). Ectopic expression of gene BCL2 enhances the survival and proliferation of chimpanzee and pig-tailed macaque iPSCs within the pre-implantation embryo, although the identity and long-term contribution of the transplanted cells warrants further investigation. In summary, we disclose transcriptomic and proteomic data, cell lines, and cell culture resources that may be broadly enabling for non-human primate iPSCs research.


Assuntos
Células-Tronco Pluripotentes Induzidas , Pan troglodytes , Animais , Macaca mulatta , Macaca nemestrina/genética , Proteômica
6.
Cell ; 185(14): 2523-2541.e30, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35738284

RESUMO

Stem cell research endeavors to generate specific subtypes of classically defined "cell types." Here, we generate >90% pure human artery or vein endothelial cells from pluripotent stem cells within 3-4 days. We specified artery cells by inhibiting vein-specifying signals and vice versa. These cells modeled viral infection of human vasculature by Nipah and Hendra viruses, which are extraordinarily deadly (∼57%-59% fatality rate) and require biosafety-level-4 containment. Generating pure populations of artery and vein cells highlighted that Nipah and Hendra viruses preferentially infected arteries; arteries expressed higher levels of their viral-entry receptor. Virally infected artery cells fused into syncytia containing up to 23 nuclei, which rapidly died. Despite infecting arteries and occupying ∼6%-17% of their transcriptome, Nipah and Hendra largely eluded innate immune detection, minimally eliciting interferon signaling. We thus efficiently generate artery and vein cells, introduce stem-cell-based toolkits for biosafety-level-4 virology, and explore the arterial tropism and cellular effects of Nipah and Hendra viruses.


Assuntos
Vírus Hendra , Vírus Nipah , Células-Tronco Pluripotentes , Artérias , Células Endoteliais , Vírus Hendra/genética , Humanos , Tropismo
7.
Sci Rep ; 12(1): 10223, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715477

RESUMO

Animal chimeras are widely used for biomedical discoveries, from developmental biology to cancer research. However, the accurate quantitation of mixed cell types in chimeric and mosaic tissues is complicated by sample preparation bias, transgenic silencing, phenotypic similarity, and low-throughput analytical pipelines. Here, we have developed and characterized a droplet digital PCR single-nucleotide discrimination assay to detect chimerism among common albino and non-albino mouse strains. In addition, we validated that this assay is compatible with crude lysate from all solid organs, drastically streamlining sample preparation. This chimerism detection assay has many additional advantages over existing methods including its robust nature, minimal technical bias, and ability to report the total number of cells in a prepared sample. Moreover, the concepts discussed here are readily adapted to other genomic loci to accurately measure mixed cell populations in any tissue.


Assuntos
Quimerismo , Transplante de Células-Tronco Hematopoéticas , Animais , Reação em Cadeia da Polimerase/métodos
8.
Cell Stem Cell ; 28(1): 141-149.e3, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33373620

RESUMO

Interspecies organ generation via blastocyst complementation has succeeded in rodents, but not yet in evolutionally more distant species. Early developmental arrest hinders the formation of highly chimeric fetuses. We demonstrate that the deletion of insulin-like growth factor 1 receptor (Igf1r) in mouse embryos creates a permissive "cell-competitive niche" in several organs, significantly augmenting both mouse intraspecies and mouse/rat interspecies donor chimerism that continuously increases from embryonic day 11 onward, sometimes even taking over entire organs within intraspecies chimeras. Since Igf1r deletion allows the evasion of early developmental arrest, interspecies fetuses with high levels of organ chimerism can be generated via blastocyst complementation. This observation should facilitate donor cell contribution to host tissues, resulting in whole-organ generation via blastocyst complementation across wide evolutionary distances.


Assuntos
Quimera , Células-Tronco Pluripotentes , Animais , Blastocisto , Quimerismo , Camundongos , Ratos , Roedores
10.
Gene Ther ; 27(10-11): 525-534, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-32704085

RESUMO

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have promising potential for opening new avenues in regenerative medicine. However, since the tumorigenic potential of undifferentiated pluripotent stem cells (PSCs) is a major safety concern for clinical transplantation, inducible Caspase-9 (iC9) is under consideration for use as a fail-safe system. Here, we used targeted gene editing to introduce the iC9 system into human iPSCs, and then interrogated the efficiency of inducible apoptosis with normal iPSCs as well as diseased iPSCs derived from patients with acute myeloid leukemia (AML-iPSCs). The iC9 system induced quick and efficient apoptosis to iPSCs in vitro. More importantly, complete eradication of malignant cells without AML recurrence was shown in disease mouse models by using AML-iPSCs. In parallel, it shed light on several limitations of the iC9 system usage. Our results suggest that careful use of the iC9 system will serve as an important countermeasure against posttransplantation adverse events in stem cell transplantation therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Apoptose , Caspase 9/genética , Caspase 9/metabolismo , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células-Tronco Pluripotentes/metabolismo
11.
iScience ; 9: 286-297, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30447647

RESUMO

Intra-embryo genome editing by CRISPR/Cas9 enables easy generation of gene-modified animals by non-homologous end joining (NHEJ)-mediated frameshift mutations or homology-directed repair (HDR)-mediated point mutations. However, large modifications, such as gene replacement or gene fusions, are still difficult to introduce in embryos without costly micromanipulators. Moreover, micromanipulation techniques for intra-embryo genome editing have been established in only a small set of animals. To overcome these issues, we developed a method of large-fragment DNA knockin without micromanipulation. In this study, we successfully delivered the knockin donor DNA into zygotes by adeno-associated virus (AAV) without removing the zona pellucida, and we succeeded in both large-DNA fragment knockin and whole exon exchange with electroporation of CRISPR/Cas9 ribonucleoprotein. By this method, we can exchange large DNA fragments conveniently in various animal species without micromanipulation.

12.
Transgenic Res ; 27(6): 525-537, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30284144

RESUMO

The production of knock-out (KO) livestock models is both expensive and time consuming due to their long gestational interval and low number of offspring. One alternative to increase efficiency is performing a genetic screening to select pre-implantation embryos that have incorporated the desired mutation. Here we report the use of sheep embryo biopsies for detecting CRISPR/Cas9-induced mutations targeting the gene PDX1 prior to embryo transfer. PDX1 is a critical gene for pancreas development and the target gene required for the creation of pancreatogenesis-disabled sheep. We evaluated the viability of biopsied embryos in vitro and in vivo, and we determined the mutation efficiency using PCR combined with gel electrophoresis and digital droplet PCR (ddPCR). Next, we determined the presence of mosaicism in ~ 50% of the recovered fetuses employing a clonal sequencing methodology. While the use of biopsies did not compromise embryo viability, the presence of mosaicism diminished the diagnostic value of the technique. If mosaicism could be overcome, pre-implantation embryo biopsies for mutation screening represents a powerful approach that will streamline the creation of KO animals.


Assuntos
Animais Geneticamente Modificados , Blastocisto , Sistemas CRISPR-Cas , Embrião de Mamíferos , Edição de Genes/veterinária , Proteínas de Homeodomínio/genética , Mutação , Transativadores/genética , Animais , Biópsia , Transferência Embrionária , Desenvolvimento Embrionário , Feminino , Edição de Genes/métodos , Masculino , Mosaicismo , Ovinos
13.
Sci Rep ; 8(1): 15289, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327488

RESUMO

To study development of the conceptus in xenogeneic environments, we assessed interspecies chimera formation as well as tetraploid complementation between mouse and rat. Overall contribution of donor PSC-derived cells was lower in interspecies chimeras than in intraspecies chimeras, and high donor chimerism was associated with anomalies or embryonic death. Organ to organ variation in donor chimerism was greater in interspecies chimeras than in intraspecies chimeras, suggesting species-specific affinity differences among interacting molecules necessary for organogenesis. In interspecies tetraploid complementation, embryo development was near normal until the stage of placental formation, after which no embryos survived.


Assuntos
Proteínas do Sistema Complemento/imunologia , Desenvolvimento Embrionário , Organogênese , Tetraploidia , Quimeras de Transplante , Animais , Blastocisto/citologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Pluripotentes/citologia , Gravidez , Ratos , Ratos Wistar , Especificidade da Espécie , Quimeras de Transplante/crescimento & desenvolvimento , Quimeras de Transplante/imunologia
14.
Stem Cell Reports ; 11(4): 988-997, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30245211

RESUMO

In the case of organ transplantation accompanied by vascular anastomosis, major histocompatibility complex mismatched vascular endothelial cells become a target for graft rejection. Production of a rejection-free, transplantable organ, therefore, requires simultaneous generation of vascular endothelial cells within the organ. To generate pluripotent stem cell (PSC)-derived vascular endothelial cells, we performed blastocyst complementation with a vascular endothelial growth factor receptor-2 homozygous mutant blastocyst. This mutation is embryonic lethal at embryonic (E) day 8.5-9.5 due to an early defect in endothelial and hematopoietic cells. The Flk-1 homozygous knockout chimeric mice survived to adulthood for over 1 year without any abnormality, and all vascular endothelial cells and hematopoietic cells were derived from the injected PSCs. This approach could be used in conjunction with other gene knockouts which induce organ deficiency to produce a rejection-free, transplantable organ in which all the organ's cells and vasculature are PSC derived.


Assuntos
Blastocisto/citologia , Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Envelhecimento/metabolismo , Animais , Blastocisto/metabolismo , Quimera , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Pericitos/citologia , Pericitos/metabolismo , Fenótipo , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Curr Opin Genet Dev ; 52: 36-41, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859382

RESUMO

By probing early embryogenesis and regeneration, interspecies chimeras provide a unique platform for discovery and clinical use. Although efficient generation of human:animal chimeric embryos remains elusive, recent advancements attempt to overcome incompatibilities in xenogeneic development and transplantation.


Assuntos
Quimera/genética , Desenvolvimento Embrionário/genética , Células-Tronco Pluripotentes , Animais , Quimera/crescimento & desenvolvimento , Humanos , Especificidade da Espécie
16.
Cell Stem Cell ; 22(1): 21-24, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29304339

RESUMO

Transplanting iPSCs into the embryos of another species can generate functional organs for basic research and translational applications. We discuss forward-looking approaches and address key remaining challenges of generating iPSC-derived human organs in vivo.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Especificidade de Órgãos , Animais , Humanos , Organogênese
17.
Sci Rep ; 7(1): 17472, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234093

RESUMO

One of the ultimate goals of regenerative medicine is the generation of patient-specific organs from pluripotent stem cells (PSCs). Sheep are potential hosts for growing human organs through the technique of blastocyst complementation. We report here the creation of pancreatogenesis-disabled sheep by oocyte microinjection of CRISPR/Cas9 targeting PDX1, a critical gene for pancreas development. We compared the efficiency of target mutations after microinjecting the CRISPR/Cas9 system in metaphase II (MII) oocytes and zygote stage embryos. MII oocyte microinjection reduced lysis, improved blastocyst rate, increased the number of targeted bi-allelic mutations, and resulted in similar degree of mosaicism when compared to zygote microinjection. While the use of a single sgRNA was efficient at inducing mutated fetuses, the lack of complete gene inactivation resulted in animals with an intact pancreas. When using a dual sgRNA system, we achieved complete PDX1 disruption. This PDX1-/- fetus lacked a pancreas and provides the basis for the production of gene-edited sheep as a host for interspecies organ generation. In the future, combining gene editing with CRISPR/Cas9 and PSCs complementation could result in a powerful approach for human organ generation.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Oócitos/metabolismo , Pâncreas/embriologia , Pâncreas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Animais , Animais Geneticamente Modificados , Cumarínicos , Edição de Genes/métodos , Técnicas de Silenciamento de Genes/métodos , Microinjeções , Pâncreas/patologia , RNA Guia de Cinetoplastídeos/administração & dosagem , Técnicas de Reprodução Assistida , Análise de Sequência de DNA , Ovinos
18.
Cell Rep ; 20(13): 3236-3247, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28954238

RESUMO

How transcription factors (TFs) reprogram one cell lineage to another remains unclear. Here, we define chromatin accessibility changes induced by the proneural TF Ascl1 throughout conversion of fibroblasts into induced neuronal (iN) cells. Thousands of genomic loci are affected as early as 12 hr after Ascl1 induction. Surprisingly, over 80% of the accessibility changes occur between days 2 and 5 of the 3-week reprogramming process. This chromatin switch coincides with robust activation of endogenous neuronal TFs and nucleosome phasing of neuronal promoters and enhancers. Subsequent morphological and functional maturation of iN cells is accomplished with relatively little chromatin reconfiguration. By integrating chromatin accessibility and transcriptome changes, we built a network model of dynamic TF regulation during iN cell reprogramming and identified Zfp238, Sox8, and Dlx3 as key TFs downstream of Ascl1. These results reveal a singular, coordinated epigenomic switch during direct reprogramming, in contrast to stepwise cell fate transitions in development.


Assuntos
Cromatina/metabolismo , Fibroblastos/metabolismo , Neurônios/metabolismo , Reprogramação Celular , Humanos
19.
Annu Rev Cell Dev Biol ; 33: 203-217, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28806099

RESUMO

As chimeras transform from beasts of Greek mythology into tools of contemporary bioscience, secrets of developmental biology and evolutionary divergence are being revealed. Recent advances in stem cell biology and interspecies chimerism have generated new models with extensive basic and translational applications, including generation of transplantable, patient-specific organs.


Assuntos
Quimera/metabolismo , Mamíferos/metabolismo , Animais , Humanos , Organogênese , Especificidade da Espécie
20.
PLoS One ; 9(6): e97198, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24937088

RESUMO

Human rhinovirus strains differ greatly in their virulence, and this has been correlated with the differing substrate specificity of the respective 2A protease (2Apro). Rhinoviruses use their 2Apro to cleave a spectrum of cellular proteins important to virus replication and anti-host activities. These enzymes share a chymotrypsin-like fold stabilized by a tetra-coordinated zinc ion. The catalytic triad consists of conserved Cys (C105), His (H34), and Asp (D18) residues. We used a semi-automated NMR protocol developed at NMRFAM to determine the solution structure of 2Apro (C105A variant) from an isolate of the clinically important rhinovirus C species (RV-C). The backbone of C2 2Apro superimposed closely (1.41-1.81 Å rmsd) with those of orthologs from RV-A2, coxsackie B4 (CB4), and enterovirus 71 (EV71) having sequence identities between 40% and 60%. Comparison of the structures suggest that the differential functional properties of C2 2Apro stem from its unique surface charge, high proportion of surface aromatics, and sequence surrounding the di-tyrosine flap.


Assuntos
Cisteína Endopeptidases/química , Rhinovirus/enzimologia , Proteínas Virais/química , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...