Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 32(6): e2611, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35366042

RESUMO

Carbon (C)-informed forest management requires understanding how disturbance and management influence soil organic carbon (SOC) stocks at scales relevant to landowners and forest policy and management professionals. The continued growth of data sets and publications allows powerful synthesis approaches to be applied to such questions at increasingly fine scales. Here, we report results from a synthesis that used meta-analysis of published studies and two large observational databases to quantify disturbance and management impacts on SOC stocks. We conducted this, the third in a series of ecoregional SOC assessments, for the Pacific Northwest, which comprises ~8% of the land area but ~12% of the U.S. forest sector C sink. At the ecoregional level, our analysis indicated that fundamental patterns of vegetation, climate, and topography are far more important controls on SOC stocks than land use history, disturbance, or management. However, the same patterns suggested that increased warming, drying, wildland fire, and forest regeneration failure pose significant risks to SOC stocks across the region. Detailed meta-analysis results indicated that wildfires diminished SOC stocks throughout the soil profile, while prescribed fire only influenced surface organic materials and harvesting had no significant overall impact on SOC. Independent observational data corroborated the negative influence of fire on SOC derived from meta-analysis, suggested that harvest impacts may vary subregionally with climate or vegetation, and revealed that forests with agricultural uses (e.g., grazing) or legacies (e.g., cultivation) had smaller SOC stocks. We also quantified effects of a range of common forest management practices having either positive (organic amendments, nitrogen [N]-fixing vegetation establishment, inorganic N fertilization) or no overall effects on SOC (other inorganic fertilizers, urea fertilization, competition suppression through herbicides). In order to maximize the management applications of our results, we qualified them with ratings of confidence based on degree of support across approaches. Last, similar to earlier published assessments from other ecoregions, we supplemented our quantitative synthesis results with a literature review to arrive at a concise set of tactics for adapting management operations to site-specific criteria.


Assuntos
Carbono , Solo , Agricultura , Carbono/análise , Florestas , Nitrogênio/análise
2.
Sci Total Environ ; 654: 1326-1336, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30841405

RESUMO

Biofuels derived from lignocellulosic materials is one of the options in addressing issues on climate change and energy independence. One of the most promising bioenergy crops is switchgrass (Panicum virgatum L.), particularly in North America. Future advancement in large-scale conversion of lignocellulosic feedstocks and relatively more competitive price for biomass and other economic advantages could lead to landowners opting to venture on switchgrass monoculture (SWITCH) in lieu of loblolly pine monoculture (PINE). Therefore, we investigated the conversion of previously managed loblolly pine stand into SWITCH in eastern North Carolina, U.S.A. on soil N availability. Treatments included PINE, SWTICH, and mature loblolly pine stand (REF). Each treatment was replicated three times on 0.8 ha plots drained by open ditches dug 1.0-1.2 m deep and spaced at 100 m. Rates of net N mineralization (Nm) and nitrification (Nn) at the top 20 cm were measured using sequential in-situ techniques in 2011 and 2012 (the 3rd and 4th years of establishment, respectively) along with a one-time laboratory incubation. On average, PINE, SWITCH, and REF can have field net Nm rates up to 0.40, 0.34 and 0.44 mg N·kg soil-1·d-1, respectively, and net Nn rates up to 0.14, 0.08 and 0.10 mg N·kg soil-1·d-1, respectively. Annually, net Nm rates ranged from 136.98 to 167.21, 62.00 to 142.61, and 63.57 to 127.95 kg N·ha-1, and net Nn rates were 56.31-62.98, 16.45-30.45, 31.99-32.94 kg N·ha-1 in PINE, SWITCH, and REF, respectively. Treatment effect was not significant on field Nm rate (p = 0.091). However, SWITCH significantly reduced nitrate-N production (p < 0.01). Overall, results indicated that establishment of SWITCH on poorly drained lands previously under PINE is less likely to significantly impact total soil N availability and potentially has minimum N leaching losses since soil mineral N under this system will be dominated by ammonium-N.


Assuntos
Agricultura , Monitoramento Ambiental , Nitrogênio/análise , Panicum/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Produtos Agrícolas , América do Norte , Pinus taeda , Solo/química
3.
Sci Total Environ ; 631-632: 13-22, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29518723

RESUMO

Managed forests in southern U.S. are a potential source of lignocellulosic biomass for biofuel production. Changes in management practices to optimize biomass production may impact the quality of waters draining to nutrient-sensitive waters in coastal plain regions. We investigated shallow groundwater quality effects of intercropping switchgrass (Panicum virgatum L.) with managed loblolly pine (Pinus taeda L.) to produce bioenergy feedstock and quality sawtimber in a poorly drained soil of eastern North Carolina, U.S.A. Treatments included PINE (traditional pine production), PSWITCH (pine-switchgrass intercropped), SWITCH (switchgrass monoculture) and REF (mature loblolly pine stand). Each treatment was replicated three times on 0.8ha plots drained by parallel-open ditches, 1.0-1.2m deep and 100m apart. Water samples were collected monthly or more frequently after fertilizer application. Water samples were analyzed for organic nitrogen (ON), ammonium N (NH4+- N), and nitrite+nitrate N (NO3-+ NO2-- N), ortohophosphate phosphorus (OP), and total organic carbon (TOC). Overall, PSWITCH did not significantly affect shallow groundwater quality relative to PINE and SWITCH. ON, NO3-+ NO2-- N, and TOC concentrations in PSWITCH, PINE and SWITCH were substantially elevated during the two years after tree harvest and site establishment. The elevated nutrient concentrations at the beginning of the study were likely caused by a combination of rapid organic matter decomposition of the abundant supply of post-harvest residues, warming of exposed soil surfaces and reduction of plant nutrient uptake that can occur after harvesting, and pre-plant fertilization. Nutrient concentrations returned to background levels observed in REF during the third year after harvest.

4.
Ecol Appl ; 25(1): 140-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26255363

RESUMO

Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks of soil carbon. Active microbial biomass, however, is higher under switchgrass, and this microbial biomass is a dominant precursor of soil carbon formation. Future studies need to investigate soil carbon dynamics throughout the lifetime of intercropping rotations to evaluate whether increases in microbial biomass can offset initial declines in soil carbon, and hence, maintain ecosystem carbon stocks.


Assuntos
Agricultura/métodos , Biocombustíveis , Carbono/química , Panicum/fisiologia , Pinus taeda/fisiologia , Solo/química , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biomassa , Ecossistema , Microbiologia do Solo
5.
Ecol Appl ; 25(8): 2366-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26910961

RESUMO

Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine-switchgrass treatment compared to those of the pine-native treatment, potentially alleviating any negative effects of N competition between pine and switchgrass. We expect that reduced soil C in the pine-switchgrass treatment, effects of pine and switchgrass rooting on soil C availability, and plant N demand are major factors influencing soil N transformations. Future research should examine rooting architecture in-intercropped systems and the effects on soil microbial communities and function.


Assuntos
Bactérias/metabolismo , Florestas , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Panicum/fisiologia , Pinus/fisiologia , Carbono/metabolismo , Nitrogênio/química , Microbiologia do Solo , Fatores de Tempo
6.
J Environ Qual ; 43(6): 1823-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602199

RESUMO

The effect of fertilizer management on nitrous oxide (NO) fluxes in agricultural ecosystems is well documented; however, our knowledge of these effects in managed forests is minimal. We established a comprehensive research study to address this knowledge gap across a range of soil drainage classes (poorly, moderately, and well drained) common in southern pine plantation management. Fertilizer treatments in each drainage class comprised of control (no fertilizer), urea + phosphorus (P), and P-coated urea fertilizer (CUF). Fertilization (168 kg N ha) occurred independently during the spring, summer, and fall to assess the effects of application timing. Nitrous oxide sampling, using vented static chambers, started immediately after seasonal fertilizer application and was performed every 6 wk for more than 1 yr. Time-integrated net annual NO emissions increased with urea (1.15 kg NO-N ha) and CUF (0.88 kg NO-N ha) application compared with unfertilized control (0.22 kg NO-N ha). Mean annual NO flux was significantly increased with fall fertilization (1.17 kg NO-N ha) relative to spring (0.73 kg NO-N ha) or summer (0.33 kg NO-N ha). Similarly, average annual NO flux was higher in poorly drained soils (1.40 kg NO-N ha) than in moderately drained (0.46 kg NO-N ha) and well-drained soils (0.39 kg NO-N ha). This study suggests that NO emissions after fertilization can be minimized by avoiding fall fertilization and poorly drained soils and by selecting enhanced-efficiency N fertilizers over urea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...