Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 289(6): 1668-1679, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34699686

RESUMO

Allergy to dogs has become increasingly prominent worldwide. Seven dog allergens have been identified, including Canis familiaris allergen 1-7 (Can f 1-7). Although Can f 1 is a major dog allergen sensitized to 50-75% of dog-allergic subjects, its IgE epitopes have not been identified. The structural analysis of an allergen is important to identify conformational epitopes. In this study, we generated a recombinant Can f 1 protein and determined its crystal structure using X-ray crystallography. Can f 1 had a typical lipocalin fold, which is composed of an eight-stranded ß-barrel and α-helix, and has high similarity to Can f 2, Can f 4, and Can f 6 in overall structure. However, the localizations of surface charges on these proteins were quite different. Based on sequence alignment and tertiary structure, we predicted five critical residues (His86, Glu98, Arg111, Glu138, and Arg152) for the IgE epitopes. The relevance of these residues to IgE reactivity was assessed by generating Can f 1 mutants with these residues substituted for alanine. Although the effects of the mutation on IgE binding depended on the sera of dog-allergic patients, H86A and R152A mutants showed reduced IgE reactivity compared with wild-type Can f 1. These results suggest that Can f 1 residues His86 and Arg152 are candidates for the IgE conformational epitope.


Assuntos
Alérgenos , Hipersensibilidade , Alérgenos/genética , Animais , Cristalografia por Raios X , Cães , Epitopos/genética , Humanos , Imunoglobulina E
2.
iScience ; 23(11): 101727, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33205029

RESUMO

Most triacylglycerol-lowering fibrates have been developed in the 1960s-1980s before their molecular target, peroxisome proliferator-activated receptor alpha (PPARα), was identified. Twenty-one ligand-bound PPARα structures have been deposited in the Protein Data Bank since 2001; however, binding modes of fibrates and physiological ligands remain unknown. Here we show thirty-four X-ray crystallographic structures of the PPARα ligand-binding domain, which are composed of a "Center" and four "Arm" regions, in complexes with five endogenous fatty acids, six fibrates in clinical use, and six synthetic PPARα agonists. High-resolution structural analyses, in combination with coactivator recruitment and thermostability assays, demonstrate that stearic and palmitic acids are presumably physiological ligands; coordination to Arm III is important for high PPARα potency/selectivity of pemafibrate and GW7647; and agonistic activities of four fibrates are enhanced by the partial agonist GW9662. These results renew our understanding of PPARα ligand recognition and contribute to the molecular design of next-generation PPAR-targeted drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...