Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(3-1): 034610, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266827

RESUMO

Microdroplets driven by the Marangoni effect are known to continue to swim for hours despite their simple composition. This swimming microdroplet changes its motion from straight to curvilinear and further to chaotic as the Péclet number increases. In this study, we investigate the effect of external perturbations on the three-dimensional axis-asymmetric model of a droplet driven by the Marangoni effect. The aim here is to elucidate the contribution of external perturbation to the complex motion of the droplet and the change in its effect according to the droplet size. In this paper, first we provide a detailed explanation on the derivation of the model introduced in our previous work, which is next used to describe the motion of the droplet in the numerical study of the angular response to random perturbations. The numerical simulation of droplet motion with different types of noise indicates that the model does not converge them into a certain type of motion but rather helps to reflect the external perturbations. The obtained results suggest that the types and properties of external perturbation have a considerable effect on the droplet motion.

2.
Phys Rev Lett ; 127(8): 088005, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477401

RESUMO

In this Letter, a water-in-oil swimming droplet's transition from straight to curvilinear motion is investigated experimentally and theoretically. An analysis of the experimental results and the model reveal that the motion transition depends on the susceptibility of the droplet's direction of movement to external stimuli as a function of environmental parameters such as droplet size. The simplicity of the present experimental system and the model suggests implications for a general class of transitions in self-propelled swimmers.

3.
Soft Matter ; 17(27): 6646-6660, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34152345

RESUMO

We investigate experimentally the behavior of self-propelled water-in-oil droplets, confined in capillaries of different square and circular cross-sections. The droplet's activity comes from the formation of swollen micelles at its interface. In straight capillaries the velocity of the droplet decreases with increasing confinement. However, at very high confinement, the velocity converges toward a non-zero value, so that even very long droplets swim. Stretched circular capillaries are used to explore even higher confinement. The lubrication layer around the droplet then takes a non-uniform thickness which constitutes a significant difference to usual flow-driven passive droplets. A neck forms at the rear of the droplet, deepens with increasing confinement, and eventually undergoes successive spontaneous splitting events for large enough confinement. Such observations stress the critical role of the activity of the droplet interface in the droplet's behavior under confinement. We then propose an analytical formulation by integrating the interface activity and the swollen micelle transport problem into the classical Bretherton approach. The model accounts for the convergence of the droplet's velocity to a finite value for large confinement, and for the non-classical shape of the lubrication layer. We further discuss on the saturation of the micelle concentration along the interface, which would explain the divergence of the lubrication layer thickness for long enough droplets, eventually leading to spontaneous droplet division.

4.
PLoS One ; 13(9): e0203594, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192829

RESUMO

Scientific communication through social media, particularly Twitter has been gaining importance in recent years. As such, it is critical to understand how information is transmitted and dispersed through outlets such as Twitter, particularly in emergency situations where there is an urgent need to relay scientific information. The purpose of this study is to examine how original tweets and retweets on Twitter were used to diffuse radiation related information after the Fukushima Daiichi nuclear power plant accident. Out of the Twitter database, we purchased all tweets (including replies) and retweets related to Fukushima Daiichi nuclear power plant accident and or radiation sent from March 2nd, 2011 to September 15th, 2011. This time frame represents the first six months after the East Japan earthquake, which occurred on March 11th, 2011. Using the obtained data, we examined the number of tweets and retweets and found that only a small number of Twitter users were the source of the original posts that were retweeted during the study period. We have termed these specific accounts as "influencers". We identified the top 100 influencers and classified the contents of their tweets into 3 groups by analyzing the document vectors of the text. Then, we examined the number of retweets for each of the 3 groups of influencers, and created a retweet network diagram to assess how the contents of their tweets were being spread. The keyword "radiation" was mentioned in over 24 million tweets and retweets during the study period. Retweets accounted for roughly half (49.7%) of this number, and the top 2% of Twitter accounts defined as "influencers" were the source of the original posts that accounted for 80.3% of the total retweets. The majority of the top 100 influencers had individual Twitter accounts bearing real names. While retweets were intensively diffused within a fixed population, especially within the same groups with similar document vectors, a group of influencers accounted for the majority of retweets one month after the disaster, and the share of each group did not change even after proven scientific information became more available.


Assuntos
Acidente Nuclear de Fukushima , Mídias Sociais/estatística & dados numéricos , Meios de Comunicação/estatística & dados numéricos , Humanos , Japão
5.
Phys Rev E ; 97(6-1): 062703, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011466

RESUMO

The self-propelled motions of micron-sized nematic liquid crystal droplets in an aqueous surfactant solution have been studied by tracking individual droplets over long time periods. Switching between self-propelled modes is observed as the droplet size decreases at a nearly constant dissolution rate: from random to helical and then straight motion. The velocity of the droplet decreases with its size for straight and helical motions but is independent of size for random motion. The switching between helical and straight motions is found to be governed by the self-propelled velocity, and is confirmed by experiments at various surfactant concentrations. The helical motion appears along with a shifting of a point defect from the self-propelled direction of the droplet. The critical velocity for this shift of the defect position is found to be related with the Ericksen number, which is defined by the ratio of the viscous and elastic stresses. In a thin cell whose thickness is smaller than that of the initial droplet size, the droplets show more complex trajectories, including "figure-8s" and zigzags. The appearance of those characteristic motions is attributed to autochemotaxis of the droplet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...