Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 70(6): 1931-1942, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37015675

RESUMO

OBJECTIVE: While the microvasculature annotation within Optical Coherence Tomography Angiography (OCTA) can be leveraged using deep-learning techniques, expensive annotation processes are required to create sufficient training data. One way to avoid the expensive annotation is to use a type of weak annotation in which only the center of the vessel is annotated. However, retaining the final segmentation quality with roughly annotated data remains a challenge. METHODS: Our proposed methods, called OCTAve, provide a new way of using weak-annotation for microvasculature segmentation. Since the centerline labels are similar to scribble annotations, we attempted to solve this problem by using the scribble-based weakly-supervised learning method. Even though the initial results look promising, we found that the method could be significantly improved by adding our novel self-supervised deep supervision method based on Kullback-Liebler divergence. RESULTS: The study on large public datasets with different annotation styles (i.e., ROSE, OCTA-500) demonstrates that our proposed method gives better quantitative and qualitative results than the baseline methods and a naive approach, with a p-value less than 0.001 on dice's coefficient and a lot fewer artifacts. CONCLUSION: The segmentation results are both qualitatively and quantitatively superior to baseline weakly-supervised methods when using scribble-based weakly-supervised learning augmented with self-supervised deep supervision, with an average drop in segmentation performance of less than 10%. SIGNIFICANCE: This work gives a new perspective on how weakly-supervised learning can be used to reduce the cost of annotating microvasculature, which can make the annotating process easier and reduce the amount of work for domain experts.


Assuntos
Angiografia , Tomografia de Coerência Óptica , Microvasos/diagnóstico por imagem , Artefatos , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador
2.
Artigo em Inglês | MEDLINE | ID: mdl-37018242

RESUMO

Kratom (KT) typically exerts antidepressant (AD) effects. However, evaluating which form of KT extracts possesses AD properties similar to the standard AD fluoxetine (flu) remained challenging. Here, we adopted an autoencoder (AE)-based anomaly detector called ANet to measure the similarity of mice's local field potential (LFP) features that responded to KT leave extracts and AD flu. The features that responded to KT syrup had the highest similarity to those that responded to the AD flu at 87.11 ± 0.25%. This finding presents the higher feasibility of using KT syrup as an alternative substance for depressant therapy than KT alkaloids and KT aqueous, which are the other candidates in this study. Apart from the similarity measurement, we utilized ANet as a multi-task AE and evaluated the performance in discriminating multi-class LFP responses corresponding to the effect of different KT extracts and AD flu simultaneously. Furthermore, we visualized learned latent features among LFP responses qualitatively and quantitatively as t-SNE projection and maximum mean discrepancy distance, respectively. The classification results reported the accuracy and F1-score of 90.11 ± 0.11% and 90.08 ± 0.00%. In summary, the outcomes of this research might help therapeutic design devices for an alternative substance profile evaluation, such as Kratom-based form, in real-world applications.

3.
IEEE J Biomed Health Inform ; 26(10): 4913-4924, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34826300

RESUMO

The elimination of ocular artifacts is critical in analyzing electroencephalography (EEG) data for various brain-computer interface (BCI) applications. Despite numerous promising solutions, electrooculography (EOG) recording or an eye-blink detection algorithm is required for the majority of artifact removal algorithms. This reliance can hinder the model's implementation in real-world applications. This paper proposes EEGANet, a framework based on generative adversarial networks (GANs), to address this issue as a data-driven assistive tool for ocular artifacts removal (source code is available at https://github.com/IoBT-VISTEC/EEGANet). After the model was trained, the removal of ocular artifacts could be applied calibration-free without relying on the EOG channels or the eye blink detection algorithms. First, we tested EEGANet's ability to generate multi-channel EEG signals, artifacts removal performance, and robustness using the EEG eye artifact dataset, which contains a significant degree of data fluctuation. According to the results, EEGANet is comparable to state-of-the-art approaches that utilize EOG channels for artifact removal. Moreover, we demonstrated the effectiveness of EEGANet in BCI applications utilizing two distinct datasets under inter-day and subject-independent schemes. Despite the absence of EOG signals, the classification performance of the signals processed by EEGANet is equivalent to that of traditional baseline methods. This study demonstrates the potential for further use of GANs as a data-driven artifact removal technique for any multivariate time-series bio-signal, which might be a valuable step towards building next-generation healthcare technology.


Assuntos
Artefatos , Eletroencefalografia , Algoritmos , Piscadela , Eletroencefalografia/métodos , Eletroculografia/métodos , Humanos , Processamento de Sinais Assistido por Computador
4.
IEEE Trans Biomed Eng ; 69(6): 2105-2118, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932469

RESUMO

OBJECTIVE: Advances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological phenomena, which are usually recorded by electroencephalography (EEG) using a non-invasive technique. Despite significant advances in MI-based BCI, EEG rhythms are specific to a subject and various changes over time. These issues point to significant challenges to enhance the classification performance, especially in a subject-independent manner. METHODS: To overcome these challenges, we propose MIN2Net, a novel end-to-end multi-task learning to tackle this task. We integrate deep metric learning into a multi-task autoencoder to learn a compact and discriminative latent representation from EEG and perform classification simultaneously. RESULTS: This approach reduces the complexity in pre-processing, results in significant performance improvement on EEG classification. Experimental results in a subject-independent manner show that MIN2Net outperforms the state-of-the-art techniques, achieving an F1-score improvement of 6.72% and 2.23% on the SMR-BCI and OpenBMI datasets, respectively. CONCLUSION: We demonstrate that MIN2Net improves discriminative information in the latent representation. SIGNIFICANCE: This study indicates the possibility and practicality of using this model to develop MI-based BCI applications for new users without calibration.


Assuntos
Interfaces Cérebro-Computador , Imaginação , Algoritmos , Eletroencefalografia/métodos , Imaginação/fisiologia , Aprendizagem
5.
IEEE Sens J ; 21(6): 7162-7178, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37974630

RESUMO

The coronavirus disease 19 (COVID-19) pandemic that has been raging in 2020 does affect not only the physical state but also the mental health of the general population, particularly, that of the healthcare workers. Given the unprecedented large-scale impacts of the COVID-19 pandemic, digital technology has gained momentum as invaluable social interaction and health tracking tools in this time of great turmoil, in part due to the imposed state-wide mobilization limitations to mitigate the risk of infection that might arise from in-person socialization or hospitalization. Over the last five years, there has been a notable increase in the demand and usage of mobile and wearable devices as well as their adoption in studies of mental fitness. The purposes of this scoping review are to summarize evidence on the sweeping impact of COVID-19 on mental health as well as to evaluate the merits of the devices for remote psychological support. We conclude that the COVID-19 pandemic has inflicted a significant toll on the mental health of the population, leading to an upsurge in reports of pathological stress, depression, anxiety, and insomnia. It is also clear that mobile and wearable devices (e.g., smartwatches and fitness trackers) are well placed for identifying and targeting individuals with these psychological burdens in need of intervention. However, we found that most of the previous studies used research-grade wearable devices that are difficult to afford for the normal consumer due to their high cost. Thus, the possibility of replacing the research-grade wearable devices with the current smartwatch is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...