Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 596, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683461

RESUMO

BACKGROUND: Arnica montana and Bellis perennis are two medicinal plants that are thought to accelerate bone repair in homoeopathic literature. Mesenchymal stem cells (MSCs) are multipotent stem cells with the ability to differentiate and regenerate bone or osteogenesis. Hence, we aimed to determine the role of Arnica montana and Bellis perennis on the osteogenic differentiation of the C3H10T1/2 stem cell line. METHODS AND RESULTS: The cell proliferation of Arnica montana and Bellis perennis was evaluated by MTT assay. Osteogenic differentiation of C3H10T1/2 was induced by the addition of ß-glycerophosphate, ascorbic acid and dexamethasone in the differentiation medium over 3 weeks. Cells were treated with Arnica montana and Bellis perennis individually as well as in combination. The osteogenic differentiation potential of Arnica montana and Bellis perennis to differentiate C3H10T1/2 into osteoblasts was measured by alkaline phosphatase activity, alizarin red staining and the expression of Osteocalcin using immunostaining and qRT-PCR. Arnica montana and Bellis perennis could enhance C3H10T1/2 cell proliferation at 1600 µg. Further, the compound showed the ability to augment osteogenesis as confirmed by increased expression of alkaline phosphatase and enhanced calcium accumulation as seen by the Alizarin Red staining and quantification. Enhanced osteogenesis was further supported by the increased expression of osteocalcin in the treated cells with individual and combined doses of Arnica montana and Bellis perennis. Therefore, the findings provide additional support for the positive impact of Arnica montana and Bellis perennis on bone formation. CONCLUSIONS: Our findings suggest that homoeopathic compounds Arnica montana and Bellis perennis can augment osteogenesis individually as well as in combination.


Assuntos
Arnica , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , Osteogênese , Extratos Vegetais , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Diferenciação Celular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Extratos Vegetais/farmacologia , Linhagem Celular , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/citologia , Fosfatase Alcalina/metabolismo , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Osteocalcina/metabolismo , Osteocalcina/genética
2.
Osteoporos Sarcopenia ; 9(1): 1-7, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37082359

RESUMO

Skeletal muscle is one of the leading frameworks of the musculo-skeletal system, which works in synergy with the bones. Long skeletal muscles provide stability and mobility to the human body and are primarily composed of proteins. Conversely, improper functioning of various skeletal muscles leads to diseases and disorders, namely, age-related muscle disorder called sarcopenia, a group of genetic muscle disorders such as muscular dystrophies, and severe muscle wasting in cancer known as cachexia. However, skeletal muscle has an excellent ability to undergo hypertrophy and enhanced functioning during sustained exercise over time. Indeed, these processes of skeletal muscle regeneration/hypertrophy, as well as degeneration and atrophy, involve an interplay of various signaling pathways. Myostatin is one such chemokine/myokine with a significant contribution to muscle regeneration or atrophy in multiple conditions. In this review, we try to put together the role and regulation of myostatin as a function of muscle regeneration extrapolated to multiple aspects of its molecular functions.

3.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1002656

RESUMO

Skeletal muscle is one of the leading frameworks of the musculo-skeletal system, which works in synergy with the bones. Long skeletal muscles provide stability and mobility to the human body and are primarily composed of proteins. Conversely, improper functioning of various skeletal muscles leads to diseases and disorders, namely, age-related muscle disorders called sarcopenia, a group of genetic muscle disorders such as muscular dystrophies, and severe muscle wasting in cancer known as cachexia. However, skeletal muscle has an excellent ability to undergo hypertrophy and enhanced functioning during sustained exercise over time. Indeed, these processes of skeletal muscle regeneration/hypertrophy, as well as degeneration and atrophy, involve an interplay of various signaling pathways. Myostatin is one such chemokine/myokine with a significant contribution to muscle regeneration or atrophy in multiple conditions. In this review, we try to put together the role and regulation of myostatin as a function of muscle regeneration extrapolated to multiple aspects of its molecular functions.

4.
Methods ; 131: 147-156, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28684339

RESUMO

Mesenchymal stem cells (MSCs) constitute the diverse progenitor populations in almost every tissue and are of immense importance in the field of regenerative medicine. CD34 is a cell surface glycoprotein identified first as a marker for the MSCs of hematopoietic origin. CD34 is now known to be expressed in cells of diverse lineages (tissues of non-hematopoietic origin) such as ectoderm, mesoderm and endoderm and is considered as a general marker for progenitor cells. Here, we present detailed protocols to obtain pure populations of MSCs from three diverse lineages such as skeletal muscle, skin, and liver from mouse tissues. We also present here the protocol for systems biology approach (proteomic analysis) of these purified cells. This proteomic approach can elucidate key signalling pathways and proteins utilized by these CD34 positive cells in undifferentiated and differentiated conditions. Furthermore in-depth proteomic analysis can also identify the altered proteome which is responsible for their function during non-clinical and clinical conditions.


Assuntos
Antígenos CD34/metabolismo , Separação Celular/métodos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pesquisa Translacional Biomédica/métodos , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular , Ectoderma/citologia , Ectoderma/metabolismo , Endoderma/citologia , Endoderma/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células/métodos , Proteômica/métodos , Medicina Regenerativa , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...