Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856881

RESUMO

Aneurysms are bulges of an artery, which require clinical management solutions. Due to the inherent advantages, endovascular coil filling is emerging as the treatment of choice for intracranial aneurysms (IAs). However, after successful treatment of coil embolization, there is a serious risk of recurrence. It is well known that optimal packing density will enhance treatment outcomes. The main objective of endovascular coil embolization is to achieve flow stasis by enabling significant reduction in intra-aneurysmal flow and facilitate thrombus formation. The present study numerically investigates the effect of framing coil orientation on intra-aneurysmal hemodynamics. For the purpose of analysis, actual shape of the embolic coil is used, instead of simplified ideal coil shape. Typically used details of the framing coil are resolved for the analysis. However, region above the framing coil is assumed to be filled with a porous medium. Present simulations have shown that orientation of the framing coil loop (FCL) greatly influences the intra-aneurysmal hemodynamics. The FCLs which were placed parallel to the outlets of basilar tip aneurysm (Coil A) were found to reduce intra-aneurysmal flow velocity that facilitates thrombus formation. Involving the coil for the region is modeled using a porous medium model with a packing density of 20 % . The simulations indicate that the framing coil loop (FCL) has a significant influence on the overall outcome.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37968912

RESUMO

An aneurysm is a disease condition, which is due to the pathological weakening of an arterial wall. These aneurysms are often found in various branch points and bifurcations of an artery in the cerebral circulation. Most aneurysms come to medical attention, either due to brain hemorrhages caused by rupture or found unruptured. To consider surgically invasive treatment modalities, clinicians need scientific methods such as, hemodynamic analysis to assess rupture risk. The arterial wall loses its structural integrity when wall shear stress (WSS) and other hemodynamic parameters exceed a certain threshold. In the present study, numerical simulations are carried out for unruptured middle cerebral artery (MCA) aneurysms. Three distinct representative sizes are chosen from a larger patient pool of 26 MCA aneurysms. Logically, these aneurysms represent three growth stages of any patient with similar anatomical structure. Simulations are performed to compare the three growth phases (with different aspect ratios) of an aneurysm and correlate their hemodynamic parameters. Simulations with patient specific boundary conditions reveal that, aneurysms with a higher aspect ratio (AR) correspond to an attendant decrease in both time-averaged wall shear stress (TAWSS) and spatial wall shear stress gradients (WSSG). Smaller MCAs were observed to have higher positive wall shear stress divergence (WSSD), exemplifying the tensile nature of arterial wall stretching. Present study identifies positive wall shear stress divergence (PWSSD) to be a potential biomarker for evaluating the growth of an aneurysm.

4.
Proc Inst Mech Eng H ; 237(9): 1091-1101, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37533293

RESUMO

Neurosurgeons often encounter dilemmas in the clinical management of cerebral aneurysms owing to an uncertainty of their rupture status and rupture risk. This study evaluates the influence of natural frequency of an aneurysm, as a novel morphological parameter to understand and analyze rupture status and risk prediction. In this work, we employ the natural frequency of 20 idealized and 50 patient specific aneurysms. The natural frequency of patient specific aneurysms is then compared against their rupture status. A strong correlation was observed between various morphological indicators and natural frequency for ideal and patient specific geometries. A statistical analysis with both Mann Whitney U test and T-test for rupture status against natural frequency has given a p-value less than 0.01 indicating a strong correlation between them. The correlation of morphological parameters with natural frequency from Pearson correlation coefficient and T-test suggests a holistic reflection of their effects on the natural frequency of an aneurysm. Thus, natural frequency could be a good indicator to discern the rupture potential of an aneurysm. The correlation between rupture status and natural frequency makes it a novel parameter that can differentiate between ruptured and unruptured patient specific aneurysms.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Hemodinâmica
5.
Comput Methods Programs Biomed ; 227: 107237, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36413819

RESUMO

BACKGROUND AND OBJECTIVE: Understanding the factors that influence the rupture of aneurysms is of primary concern to the clinicians, who are grappled with patient management. It is important to know how the relation between morphological features of the cerebral aneurysm, and the mechanical stresses on the containing arterial walls are influenced by the hemodynamic forces. Present study investigates three different shapes, which have been identified correspondingly in patient-specific scenarios as well. The primary objective is to categorize the bifurcation aneurysms into standard shapes such as, spherical, beehive and pear-shaped, based on patient-specific clinical studies and further compare and contrast the model aneurysms with the patient specific configurations, for their hemodynamic factors as well as the attendant stresses on the wall. MethodsComputational fluid dynamic simulations are performed accounting for the fluid-structure interaction (FSI) effects between the flowing fluid and the containing vessel wall. Blood is assumed to be Newtonian, while the arterial walls are assumed to be linearly elastic. A commercial solver is used for performing detailed calculations. Hemodynamic and bio-mechanical rupture predictions are carried out for the three different shapes. Observations derived from the idealised simulations are compared and contrasted against their patient-specific counterparts. ResultsFrom detailed numerical simulations, it was observed that pear-shaped aneurysms exhibit large re-circulation bubble and flow stagnation zone, with higher residence time for the particles, which may lead to atherosclerotic lesions. Beehive shape allows for maximum flow into the aneurysmal sac with concentrated jet impinging on the dome, leading to high values of maximum WSS (MWSS) resulting in great propensity to form a secondary bleb. However, flow field inside a spherical aneurysm is found to be stable with fewer vortices, and nearly uniform distribution of wall stresses are observed though-out the sac, which perhaps signifies hemodynamically and bio-mechanically stable condition. ConclusionCategorizing patient-specific intracranial aneurysms into standard shapes viz, spherical, beehive and pear could generalize the process of prediction of hemodynamic and bio-mechanical rupture indicators. Comparative assessment of the flow field and stresses reported from the simulations on idealised models, with corresponding patient-specific simulations reveal that, these studies could aid in understanding the generalised shape dependence of hemodynamic and bio-mechanical behaviour of aneurysms.


Assuntos
Aterosclerose , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Hemodinâmica , Artérias , Estresse Mecânico
6.
Comput Methods Programs Biomed ; 213: 106508, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800807

RESUMO

BACKGROUND AND OBJECTIVE: Analysis and prediction of rupture risk of abdominal aortic aneurysms (AAA) facilitates planning for surgical interventions and assessment of plausible treatment modalities. Present approach of using maximum diameter criterion, is giving way to hemodynamic and bio-mechanical based predictors in conjunction with Computational fluid dynamic (CFD) simulations. Detailed studies on hemodynamic and bio-mechanical parameters at the stage of maximum growth/rupture is of practical importance to the clinical community. However, understanding the changes in these parameters at different stages of growth, will be useful for clinicians, in planning routine monitoring to reduce the risk of sudden rupture. This is particularly useful in medical resource starved nations. Present study investigates the hemodynamic and bio-mechanical changes occurring during the growth stages of aortic aneurysms using fluid structure interaction (FSI) studies. METHOD: Six idealized fusiform aneurysm models spanning high (shorter) and low (longer) values of the shape index (DHr), have been analysed at three different stages of growth viz, a Dmax of 3.5cm, 4.25cm, 5cm. Pulsatile Newtonian blood flow, passing through an elastic arterial vessel wall with uniform thickness is assumed. Two-way coupled fluid structure interaction have been employed for the numerical simulation of blood flow dynamics and arterial wall mechanics. RESULTS: Wall shear stress (WSS) parameters and vonmises stress indicators, co-relating rupture and thrombus formation, have been extracted and reported, at each growth stage. When the aneurysm progresses in diameter, the areas recording abnormally low TAWSS, as well as areas of high/low OSI were found to increase at different rates for shorter and longer aneurysms. Moreover, drastic increase in the maximum wall stresses (MWS) and wall displacement were observed as the aneurysm approached the critical diameter. CONCLUSION: Hemodynamic predictors were found to be highly dependent on the shape index (DHr), when the aneurysm was small, whereas significant influence of DHr on the wall stresses happens, as the aneurysm approaches the critical diameter. Inconsistent variation of these indicators exhibited by shorter aneurysms (high DHr) at different growth stages, demands routine monitoring (using scans), of such aneurysms, to prevent unexpected rupture.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Intracraniano , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Simulação por Computador , Progressão da Doença , Hemodinâmica , Humanos , Modelos Cardiovasculares , Estresse Mecânico
7.
Neurol India ; 64(3): 373-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27147140
8.
Neurol India ; 64 Suppl: S98-S100, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26954977

RESUMO

Although hemodynamics plays a key role in the genesis, expansion, and rupture of an aneurysm, quantified hemodynamic parameters for comparison have not been standardized for predicting the risk of rupture of intracranial aneurysms. Computational fluid dynamics is being increasingly used in near-realistic, patient-specific simulation of blood flow in intracranial aneurysms. A simulation was carried out on the computed tomography (CT) angiogram image of a patient harboring a giant internal carotid artery aneurysm. Since the CT angiogram was performed a few hours before the fatal rupture of the aneurysm, the study could give an insight into the hemodynamics of the aneurysm that tipped it to rupture. Wall shear stress, pressure distribution, and flow streamlines were obtained using computational methods. These objective results could form the basis of reference for future studies employing simulation techniques for predicting aneurysmal rupture.


Assuntos
Aneurisma Roto , Hemorragia Cerebral , Angiografia por Tomografia Computadorizada , Aneurisma Roto/complicações , Aneurisma Roto/diagnóstico por imagem , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/etiologia , Circulação Cerebrovascular , Humanos
11.
Neurol India ; 63(4): 491-2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26238881
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...