Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci Technol ; 60(7): 1970-1980, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37206413

RESUMO

Aflatoxin contamination is a major concern in dry chilli pods during storage, which renders chilli flakes, and chilli powder unsafe for consumption and unfit for trade. Traditional method of storage also results in both qualitative as well as quantitative losses. In our study, we evaluated Purdue improved crop storage (PICS) based triple layer hermetic bags (PICS triple bags) for their efficacy in safe storage of dry chilli pods. Four different types of storage bags including untreated jute bag, polythene bag, triple layer hermetic bag, and fungicide treated jute bag were tested for three different storage periods (2, 4, and 6 month). Results suggest that aflatoxin levels resulting from Aspergillus flavus infection were below detectable levels in chilli pods stored in PICS triple bags owing to the modified atmospheric conditions of hypoxia and hypercarbia conditions created inside the bags. Further, dry chilli pods stored in PICS triple bags for 2, 4 and 6 month recorded no loss in test weight (1000 seeds) and no change in moisture content, whereas significantly moisture loss was observed in remaining treatment bags. Germination percentage of the seeds from the PICS triple bags at 2, 4 and 6 month storage was highest (72%) compared to all other treatment bags. Overall, we conclude that the PICS triple bags were effective in safe storage of dry chilli pods by ensuring detrimental environment to Aspergillus flavus growth and preserved both qualitative and quantitative characteristics including test weight, moisture content, and per cent germination compared to other storage bags.

2.
Mol Genet Genomics ; 294(2): 365-378, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30467595

RESUMO

Ploidy difference between wild Arachis species and cultivated genotypes hinder transfer of useful alleles for agronomically important traits. To overcome this genetic barrier, two synthetic tetraploids, viz., ISATGR 1212 (A. duranensis ICG 8123 × A. ipaensis ICG 8206) and ISATGR 265-5A (A. kempff-mercadoi ICG 8164 × A. hoehnei ICG 8190), were used to generate two advanced backcross (AB) populations. The AB-populations, namely, AB-pop1 (ICGV 91114 × ISATGR 1212) and AB-pop2, (ICGV 87846 × ISATGR 265-5A) were genotyped with DArT and SSR markers. Genetic maps were constructed for AB-pop1 and AB-pop2 populations with 258 loci (1415.7 cM map length and map density of 5.5 cM/loci) and 1043 loci (1500.8 cM map length with map density of 1.4 cM/loci), respectively. Genetic analysis identified large number of wild segments in the population and provided a good source of diversity in these populations. Phenotyping of these two populations identified several introgression lines with good agronomic, oil quality, and disease resistance traits. Quantitative trait locus (QTL) analysis showed that the wild genomic segments contributed favourable alleles for foliar disease resistance while cultivated genomic segments mostly contributed favourable alleles for oil quality and yield component traits. These populations, after achieving higher stability, will be useful resource for genetic mapping and QTL discovery for wild species segments in addition to using population progenies in breeding program for diversifying the gene pool of cultivated groundnut.


Assuntos
Arachis/genética , Resistência à Doença/genética , Domesticação , Doenças das Plantas/genética , Alelos , Arachis/crescimento & desenvolvimento , Mapeamento Cromossômico , Genoma de Planta/genética , Impressão Genômica , Genótipo , Repetições de Microssatélites/genética , Melhoramento Vegetal , Óleos de Plantas/química , Locos de Características Quantitativas/genética
4.
Arch Virol ; 160(8): 2019-29, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26060057

RESUMO

Deep-sequencing analysis of double-stranded RNA extracted from a mosaic-diseased pigeonpea plant (Cajanus cajan L., family Fabaceae) revealed the complete sequence of six emaravirus-like negative-sense RNA segments of 7009, 2229, 1335, 1491, 1833 and 1194 nucleotides in size. In the order from RNA1 to RNA6, these genomic RNAs contained ORFs coding for the RNA-dependent RNA polymerase (RdRp, p1 of 266 kDa), the glycoprotein precursor (GP, p2 of 74.5 kDa), the nucleocapsid (NC, p3 of 34.9 kDa), and the putative movement protein (MP, p4 of 40.7 kDa), while p5 (55 kDa) and p6 (27 kDa) had unknown functions. All RNA segments showed distant relationships to viruses of the genus Emaravirus, and in particular to pigeonpea sterility mosaic virus (PPSMV), with which they shared nucleotide sequence identity ranging from 48.5 % (RNA3) to 62.5 % (RNA1). In phylogenetic trees constructed from the sequences of the proteins encoded by RNA1, RNA2 and RNA3 (p1, p2 and p3), this new viral entity showed a consistent grouping with fig mosaic virus (FMV) and rose rosette virus (RRV), which formed a cluster of their own, clearly distinct from PPSMV-1. In experimental greenhouse trials, this novel virus was successfully transmitted to pigeonpea and French bean seedlings by the eriophyid mite Aceria cajani. Preliminary surveys conducted in the Hyderabad region (India) showed that the virus in question is widespread in pigeonpea plants affected by sterility mosaic disease (86.4 %) but is absent in symptomless plants. Based on molecular, biological and epidemiological features, this novel virus is the second emaravirus infecting pigeonpea, for which the provisional name pigeonpea sterility mosaic virus 2 (PPSMV-2) is proposed.


Assuntos
Cajanus/virologia , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Filogenia , Vírus de Plantas/classificação , Vírus de Plantas/genética , Vírus de RNA/classificação , Vírus de RNA/genética , Proteínas Virais/genética
5.
Theor Appl Genet ; 127(8): 1771-81, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24927821

RESUMO

KEY MESSAGE: Successful introgression of a major QTL for rust resistance, through marker-assisted backcrossing, in three popular Indian peanut cultivars generated several promising introgression lines with enhanced rust resistance and higher yield. Leaf rust, caused by Puccinia arachidis Speg, is one of the major devastating diseases in peanut (Arachis hypogaea L.). One QTL region on linkage group AhXV explaining upto 82.62 % phenotypic variation for rust resistance was validated and introgressed from cultivar 'GPBD 4' into three rust susceptible varieties ('ICGV 91114', 'JL 24' and 'TAG 24') through marker-assisted backcrossing (MABC). The MABC approach employed a total of four markers including one dominant (IPAHM103) and three co-dominant (GM2079, GM1536, GM2301) markers present in the QTL region. After 2-3 backcrosses and selfing, 200 introgression lines (ILs) were developed from all the three crosses. Field evaluation identified 81 ILs with improved rust resistance. Those ILs had significantly increased pod yields (56-96 %) in infested environments compared to the susceptible parents. Screening of selected 43 promising ILs with 13 markers present on linkage group AhXV showed introgression of the target QTL region from the resistant parent in 11 ILs. Multi-location field evaluation of these ILs should lead to the release of improved varieties. The linked markers may be used in improving rust resistance in peanut breeding programmes.


Assuntos
Arachis/genética , Arachis/imunologia , Basidiomycota/fisiologia , Resistência à Doença/genética , Endogamia , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Arachis/microbiologia , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos , Genoma de Planta/genética , Genótipo , Doenças das Plantas/genética , Autofertilização
6.
Virus Res ; 188: 27-31, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24685674

RESUMO

The sequences of five viral RNA segments of pigeonpea sterility mosaic virus (PPSMV), the agent of sterility mosaic disease (SMD) of pigeonpea (Cajanus cajan, Fabaceae), were determined using the deep sequencing technology. Each of the five RNAs encodes a single protein on the negative-sense strand with an open reading frame (ORF) of 6885, 1947, 927, 1086, and 1,422 nts, respectively. In order, from RNA1 to RNA5, these ORFs encode the RNA-dependent RNA polymerase (p1, 267.9 kDa), a putative glycoprotein precursor (p2, 74.3 kDa), a putative nucleocapsid protein (p3, 34.6 kDa), a putative movement protein (p4, 40.8 kDa), while p5 (55 kDa) has an unknown function. All RNA segments of PPSMV showed the highest identity with orthologs of fig mosaic virus (FMV) and Rose rosette virus (RRV). In phylogenetic trees constructed with the amino acid sequences of p1, p2 and p3, PPSMV clustered consistently with other emaraviruses, close to clades comprising members of other genera of the family Bunyaviridae. Based on the molecular characteristics unveiled in this study and the morphological and epidemiological features similar to other emaraviruses, PPSMV seems to be the seventh species to join the list of emaraviruses known to date and accordingly, its classification in the genus Emaravirus seems now legitimate.


Assuntos
Cajanus/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de RNA/genética , Análise por Conglomerados , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Homologia de Sequência , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...