Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Dev Technol ; 25(3): 359-365, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30632427

RESUMO

The work reported here is an extension of our previous findings in which supercritical composite particles (SCP) of alpha lipoic acid (ALA) masked with hydrogenated colza oil (HCO) named as ALA/HCO/SCP were obtained by the modified particles from gas-saturated solutions (PGSS) process in supercritical carbon dioxide in order to obscure the unpleasant taste and odor of ALA. The masking effect on ALA/HCO/SCP was compared with the widely used mechano-chemically masked formulation of ALA and HCO named as MC-50F. In the present study, ALA/HCO/SCP particles were found to have a significant improvement in regard to bitterness, numbness, and smell compared to ALA bulk powders suggesting they were well coated. The pharmacokinetic parameters for ALA/HCO/SCP and ALA bulk powder gave similar values but were significantly different from those of MC-50F. The amount of ALA absorbed into the body, in the administered ALA/HCO/SCP, was comparable to that absorbed by ALA bulk powder, whereas about half portion of ALA of the MC-50F was not absorbed, because the ALA/HCO/SCP particles were small enough and the particles of MC-50F were relatively large and had smaller specific surface area. Therefore, this study suggested a newly masked candidate may offer functional particles with maintained efficacy.


Assuntos
Dióxido de Carbono/química , Óleos de Plantas/química , Ácido Tióctico/administração & dosagem , Animais , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Ácido Tióctico/farmacocinética
2.
Ultrason Sonochem ; 29: 19-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26584980

RESUMO

The present study reports on the ultrasonic enhancement of the liquid carbon dioxide (CO2) extraction of luteolin and apigenin from the leaves of Perilla frutescens (L.) Britt., to which ethanol is added as a cosolvent. The purpose of this research is also to investigate the effects of the particle size, temperature, pressure, irradiation power, irradiation time, and ethanol content in the liquid CO2 solution on the extraction yield using single-factor experiments. We qualitatively and quantitatively analyzed the yields in the extract using HPLC (high-performance liquid chromatography). The liquid CO2 mixed with ethanol was used at temperatures of 5, 20 and 25 °C with extraction pressures from 8 to 14 MPa. The yields of luteolin and apigenin in the extraction were clearly enhanced by the ultrasound irradiation, but the selectivity of the extract was not changed. The yields of luteolin and apigenin in the extract were also significantly improved by adjusting the operating temperature, the irradiation time, and the ethanol content in the liquid CO2 solution, but no change in the selectivity of the extract was observed.


Assuntos
Apigenina/isolamento & purificação , Dióxido de Carbono/química , Fracionamento Químico/métodos , Etanol/química , Luteolina/isolamento & purificação , Perilla frutescens/química , Ondas Ultrassônicas , Folhas de Planta/química , Pressão , Solventes/química , Temperatura , Fatores de Tempo
3.
Pharm Dev Technol ; 21(6): 737-48, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26024240

RESUMO

Alpha lipoic acid (ALA), an active substance in anti-aging products and dietary supplements, need to be masked with an edible polymer to obscure its unpleasant taste. However, the high viscosity of the ALA molecules prevents them from forming microcomposites with masking materials even in supercritical carbon dioxide (scCO2). Therefore, the purpose of this study was to investigate and develop a novel production method for microcomposite particles for ALA in hydrogenated colza oil (HCO). Microcomposite particles of ALA/HCO were prepared by using a novel gas-saturated solution (PGSS) process in which the solid-dispersion method is used along with stepwise temperature control (PGSS-STC). Its high viscosity prevents the formation of microcomposites in the conventional PGSS process even under strong agitation. Here, we disperse the solid particles of ALA and HCO in scCO2 at low temperatures and change the temperature stepwise in order to mix the melted ALA and HCO in scCO2. As a result, a homogeneous dispersion of the droplets of ALA in melted HCO saturated with CO2 is obtained at high temperatures. After the rapid expansion of the saturated solution through a nozzle, microcomposite particles of ALA/HCO several micrometers in diameter are obtained.


Assuntos
Dióxido de Carbono/química , Química Farmacêutica/métodos , Microesferas , Ácido Tióctico/síntese química , Cromatografia com Fluido Supercrítico/métodos , Hidrogenação , Tamanho da Partícula , Soluções Farmacêuticas/análise , Soluções Farmacêuticas/síntese química , Soluções Farmacêuticas/farmacocinética , Ácido Tióctico/análise , Ácido Tióctico/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...