Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 134(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34155518

RESUMO

Mutations in CEP290 (also known as NPHP6), a large multidomain coiled coil protein, are associated with multiple cilia-associated syndromes. Over 130 CEP290 mutations have been linked to a wide spectrum of human ciliopathies, raising the question of how mutations in a single gene cause different disease syndromes. In zebrafish, the expressivity of cep290 deficiencies were linked to the type of genetic ablation: acute cep290 morpholino knockdown caused severe cilia-related phenotypes, whereas deficiencies in a CRISPR/Cas9 genetic mutant were restricted to photoreceptor defects. Here, we show that milder phenotypes in genetic mutants were associated with the upregulation of genes encoding the cilia-associated small GTPases arl3, arl13b and unc119b. Upregulation of UNC119b was also observed in urine-derived renal epithelial cells from human Joubert syndrome CEP290 patients. Ectopic expression of arl3, arl13b and unc119b in cep290 morphant zebrafish embryos rescued Kupffer's vesicle cilia and partially rescued photoreceptor outer segment defects. The results suggest that genetic compensation by upregulation of genes involved in a common subcellular process, lipidated protein trafficking to cilia, may be a conserved mechanism contributing to genotype-phenotype variations observed in CEP290 deficiencies. This article has an associated First Person interview with the first author of the paper.


Assuntos
Antígenos de Neoplasias , Proteínas de Ciclo Celular , Cílios , Proteínas do Citoesqueleto , Proteínas Monoméricas de Ligação ao GTP , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Cílios/genética , Cílios/metabolismo , Proteínas do Citoesqueleto/genética , Humanos , Proteínas Associadas aos Microtúbulos , Mutação/genética , Regulação para Cima/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Acta Physiol (Oxf) ; 233(1): e13705, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34114742

RESUMO

AIM: The phosphorylation level of the furosemide-sensitive Na+ -K+ -2Cl- cotransporter (NKCC2) in the thick ascending limb (TAL) is used as a surrogate marker for NKCC2 activation and TAL function. However, in mice, analyses of NKCC2 phosphorylation with antibodies against phosphorylated threonines 96 and 101 (anti-pT96/pT101) give inconsistent results. We aimed (a) to elucidate these inconsistencies and (b) to develop a phosphoform-specific antibody that ensures reliable detection of NKCC2 phosphorylation in mice. METHODS: Genetic information, molecular biology, biochemical techniques and mouse phenotyping was used to study NKCC2 and kidney function in two commonly used mouse strains (ie 129Sv and in C57BL/6 mice). Moreover, a new phosphoform-specific mouse NKCC2 antibody was developed and characterized. RESULTS: Amino acids sequence alignment revealed that C57BL/6 mice have a strain-specific five amino acids deletion (ΔF97-T101) in NKCC2 that diminishes the detection of NKCC2 phosphorylation with previously developed pT96/pT101 NKCC2 antibodies. Instead, the antibodies cross-react with the phosphorylated thiazide-sensitive NaCl cotransporter (NCC), which can obscure interpretation of results. Interestingly, the deletion in NKCC2 does not impact on kidney function and/or expression of renal ion transport proteins as indicated by the analysis of the F2 generation of crossbred 129Sv and C57BL/6 mice. A newly developed pT96 NKCC2 antibody detects pNKCC2 in both mouse strains and shows no cross-reactivity with phosphorylated NCC. CONCLUSION: Our work reveals a hitherto unappreciated, but essential, strain difference in the amino acids sequence of mouse NKCC2 that needs to be considered when analysing NKCC2 phosphorylation in mice. The new pNKCC2 antibody circumvents this technical caveat.


Assuntos
Aminoácidos , Simportadores de Cloreto de Sódio-Potássio , Aminoácidos/metabolismo , Animais , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
3.
Zebrafish ; 17(2): 153-155, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32159459

RESUMO

Reactive oxygen species (ROS) are important regulators of intracellular signaling pathways in health and disease. It is implicated that ROS may play critical roles in pathogenesis of a number of kidney diseases including diabetic nephropathy. However, due to the lack of tools for in vivo detection of redox status, our knowledge of redox dynamics is still fragmentary. In this study, we present novel zebrafish UAS transgenic lines expressing mitochondrial and cytoplasmic targeted redox fluorescent biosensors, Grx1-roGFP2 and mitoGrx1-roGFP2. As the zebrafish is an ideal animal model for intravital imaging, these transgenic zebrafish provide useful tools to analyze renal redox dynamics in vivo.


Assuntos
Proteínas de Peixes/metabolismo , Glutationa/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Rim/metabolismo , Oxirredução
4.
Pflugers Arch ; 469(7-8): 859-867, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28656378

RESUMO

Understanding the molecular basis of the complex regulatory networks controlling renal ion transports is of major physiological and clinical importance. In this study, we aimed to identify evolutionarily conserved critical players in the function of the renal distal convoluted tubule (DCT) by a comparative transcriptomic approach. We generated a transgenic zebrafish line with expression of the red fluorescent mCherry protein under the control of the zebrafish DCT-specific promoter of the thiazide-sensitive NaCl cotransporter (NCC). The mCherry expression was then used to isolate from the zebrafish mesonephric kidneys the distal late (DL) segments, the equivalent of the mammalian DCT, for subsequent RNA-seq analysis. We next compared this zebrafish DL transcriptome to the previously established mouse DCT transcriptome and identified a subset of gene products significantly enriched in both the teleost DL and the mammalian DCT, including SLCs and nuclear transcription factors. Surprisingly, several of the previously described regulators of NCC (e.g., SPAK, KLHL3, ppp1r1a) in the mouse were not found enriched in the zebrafish DL. Nevertheless, the zebrafish DL expressed enriched levels of related homologues. Functional knockdown of one of these genes, ppp1r1b, reduced the phosphorylation of NCC in the zebrafish pronephros, similar to what was seen previously in knockout mice for its homologue, Ppp1r1a. The present work is the first report on global gene expression profiling in a specific nephron portion of the zebrafish kidney, an increasingly used model system for kidney research. Our study suggests that comparative analysis of gene expression between phylogenetically distant species may be an effective approach to identify novel regulators of renal function.


Assuntos
Sequência Conservada , Túbulos Renais Distais/metabolismo , Transcriptoma , Animais , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Evolução Molecular , Camundongos , Receptores de Droga/genética , Receptores de Droga/metabolismo , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
Kidney Int ; 88(5): 1047-56, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26154927

RESUMO

Podocyte dysfunction impairs the size selectivity of the glomerular filter, leading to proteinuria, hypoalbuminuria, and edema, clinically defined as nephrotic syndrome. Hereditary forms of nephrotic syndrome are linked to mutations in podocyte-specific genes. To identify genes contributing to podocyte dysfunction in acquired nephrotic syndrome, we studied human glomerular gene expression data sets for glomerular-enriched gene transcripts differentially regulated between pretransplant biopsy samples and biopsies from patients with nephrotic syndrome. Candidate genes were screened by in situ hybridization for expression in the zebrafish pronephros, an easy-to-use in vivo assay system to assess podocyte function. One glomerulus-enriched product was the Rho-GTPase binding protein, IQGAP2. Immunohistochemistry found a strong presence of IQGAP2 in normal human and zebrafish podocytes. In zebrafish larvae, morpholino-based knockdown of iqgap2 caused a mild foot process effacement of zebrafish podocytes and a cystic dilation of the urinary space of Bowman's capsule upon onset of urinary filtration. Moreover, the glomerulus of zebrafish morphants showed a glomerular permeability for injected high-molecular-weight dextrans, indicating an impaired size selectivity of the glomerular filter. Thus, IQGAP2 is a Rho-GTPase binding protein, highly abundant in human and zebrafish podocytes, which controls normal podocyte structure and function as evidenced in the zebrafish pronephros.


Assuntos
Proteínas Ativadoras de GTPase/genética , Síndrome Nefrótica/genética , Síndrome Nefrótica/fisiopatologia , Podócitos/fisiologia , Pronefro/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Cápsula Glomerular/patologia , Proteínas Ativadoras de GTPase/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Hibridização In Situ , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Podócitos/metabolismo , Podócitos/patologia , Pronefro/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
7.
Hum Mutat ; 36(1): 87-97, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25323976

RESUMO

Numerous genes are involved in human growth regulation. Recently, autosomal-recessive inherited variants in centrosomal proteins have been identified in Seckel syndrome, primary microcephaly, or microcephalic osteodysplastic primary dwarfism. Common hallmarks of these syndromic forms are severe short stature and microcephaly. In a consanguineous family with two affected children with severe growth retardation and normocephaly, we used homozygosity mapping and next-generation sequencing to identify a homozygous MAP4 variant. MAP4 is a major protein for microtubule assembly during mitosis. High-expression levels in the somite boundaries of zebrafish suggested a role in growth and body segment patterning. The identified variant affects binding sites of kinases necessary for dynamic instability of microtubule formation. We found centrosome amplifications in mitotic fibroblast cells in vivo and in vitro. These numeric centrosomal aberrations were also present during interphase resulting in aberrant ciliogenesis. Furthermore, affected cells showed a dysfunction of the microtubule-dependent assembly of the Golgi apparatus, indicated by a significant lack of compactness of Golgi membranes. These observations demonstrated that MAP4 mutations contribute to the clinical spectrum of centrosomal defects and confirmed the complex role of a centrosomal protein in centrosomal, ciliary, and Golgi regulation associated with severe short stature.


Assuntos
Centrossomo/metabolismo , Cílios/metabolismo , Complexo de Golgi/metabolismo , Transtornos do Crescimento/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Homozigoto , Humanos , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/metabolismo , Mutação de Sentido Incorreto , República da Macedônia do Norte , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Gen Comp Endocrinol ; 188: 303-8, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23454670

RESUMO

The zebrafish is a powerful genetic model organism. In recent years, zebrafish has been increasingly used to model human diseases. Due to a number of recent technological advancements, the genetic tool box is now also stocked with sophisticated transgenic and reverse genetic tools. Here, we focus on both commonly used and recently established reverse genetic and transgenic tools available in zebrafish. These new developments make the zebrafish an even more attractive animal model in comparative endocrinology.


Assuntos
Endocrinologia/métodos , Genética Reversa/métodos , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Modelos Animais
9.
Dev Genes Evol ; 221(3): 179-86, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21725870

RESUMO

Klotho is an aging suppressor gene. In mice, loss of Klotho function causes accelerated aging while increased Klotho expression increases longevity. This study aimed to identify and characterize the orthologue of Klotho in zebrafish, a powerful model organism for the investigation of development and human disease. Zebrafish klotho was identified by a bioinformatics approach, and cloning and sequencing of klotho cDNA confirmed the in silico analysis. The zebrafish Klotho protein has a structure similar to human and mouse Klotho, but it lacks an apparent secretory signal sequence. We can find no evidence of an alternative transcript isoform lacking the transmembrane domain coding sequence as seen in mammals. RT-PCR revealed the expression of klotho during embryonic development and in a wider variety of adult tissues than in mouse. Quantitative real-time RT-PCR demonstrated the relative gene expression profile of zebrafish Klotho during embryogenesis and in adult tissues. In situ hybridization showed an apparently diffuse signal of klotho mRNA expression in the adult zebrafish testis.


Assuntos
Glucuronidase/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , DNA Complementar , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Glucuronidase/metabolismo , Humanos , Proteínas Klotho , Masculino , Camundongos , Filogenia , Testículo/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...