Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(18)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36139353

RESUMO

Heat shock protein (HSP90), a highly conserved molecular chaperon, is indispensable for the maturation of newly synthesized poly-peptides and provides a shelter for the turnover of misfolded or denatured proteins. In cancers, the client proteins of HSP90 extend to the entire process of oncogenesis that are associated with all hallmarks of cancer. Accumulating evidence has demonstrated that the client proteins are guided for proteasomal degradation when their complexes with HSP90 are disrupted. Accordingly, HSP90 and its co-chaperones have emerged as viable targets for the development of cancer therapeutics. Consequently, a number of natural products and their analogs targeting HSP90 have been identified. They have shown a strong inhibitory effect on various cancer types through different mechanisms. The inhibitors act by directly binding to either HSP90 or its co-chaperones/client proteins. Several HSP90 inhibitors-such as geldanamycin and its derivatives, gamitrinib and shepherdin-are under clinical evaluation with promising results. Here, we review the subcellular localization of HSP90, its corresponding mechanism of action in the malignant phenotypes, and the recent progress on the development of HSP90 inhibitors. Hopefully, this comprehensive review will shed light on the translational potential of HSP90 inhibitors as novel cancer therapeutics.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
2.
Clin Cancer Res ; 28(10): 2180-2195, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35247901

RESUMO

PURPOSE: To investigate the antitumor activity of a mitochondrial-localized HSP90 inhibitor, Gamitrinib, in multiple glioma models, and to elucidate the antitumor mechanisms of Gamitrinib in gliomas. EXPERIMENTAL DESIGN: A broad panel of primary and temozolomide (TMZ)-resistant human glioma cell lines were screened by cell viability assays, flow cytometry, and crystal violet assays to investigate the therapeutic efficacy of Gamitrinib. Seahorse assays were used to measure the mitochondrial respiration of glioma cells. Integrated analyses of RNA sequencing (RNAseq) and reverse phase protein array (RPPA) data were performed to reveal the potential antitumor mechanisms of Gamitrinib. Neurospheres, patient-derived organoids (PDO), cell line-derived xenografts (CDX), and patient-derived xenografts (PDX) models were generated to further evaluate the therapeutic efficacy of Gamitrinib. RESULTS: Gamitrinib inhibited cell proliferation and induced cell apoptosis and death in 17 primary glioma cell lines, 6 TMZ-resistant glioma cell lines, 4 neurospheres, and 3 PDOs. Importantly, Gamitrinib significantly delayed the tumor growth and improved survival of mice in both CDX and PDX models in which tumors were either subcutaneously or intracranially implanted. Integrated computational analyses of RNAseq and RPPA data revealed that Gamitrinib exhibited its antitumor activity via (i) suppressing mitochondrial biogenesis, OXPHOS, and cell-cycle progression and (ii) activating the energy-sensing AMP-activated kinase, DNA damage, and stress response. CONCLUSIONS: These preclinical findings established the therapeutic role of Gamitrinib in gliomas and revealed the inhibition of mitochondrial biogenesis and tumor bioenergetics as the primary antitumor mechanisms in gliomas.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioma , Animais , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Carcinog ; 58(9): 1581-1588, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31062416

RESUMO

Engaging a telomere maintenance mechanism during DNA replication is essential for almost all advanced cancers. The conversion from normal and premalignant somatic cells to advanced malignant cells often results (85%-90%) from the reactivation of the functional ribonucleoprotein holoenzyme complex, referred to as telomerase. Modulation of the human telomerase reverse transcriptase (hTERT) appears to be rate limiting to produce functional telomerase and engage a telomere maintenance mechanism. The remaining 10% to 15% of cancers overcome progressively shortened telomeres by activating an alternative lengthening of telomeres (ALT) maintenance mechanism, through a DNA recombination pathway. Exploration into the specific mechanisms of telomere maintenance in cancer have led to the development of drugs such as Imetelstat (GRN163L), BIBR1532, 6-thio-dG, VE-822, and NVP-BEZ235 being investigated as therapeutic approaches for treating telomerase and ALT tumors. The successful use of 6-thio-dG (a nucleoside preferentially recognized by telomerase) that targets and uncaps telomeres in telomerase positive but not normal telomerase silent cells has recently shown impressive effects on multiple types of cancer. For example, 6-thio-dG overcomes therapy-resistant cancers in a fast-acting mechanism potentially providing an alternative or additional route of treatment for patients with cancer. In this perspective, we provide a synopsis of the current landscape of telomeres and telomerase processing in cancer development and how this new knowledge may improve outcomes for patients with cancer.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Telômero/efeitos dos fármacos , Humanos , Neoplasias/metabolismo , Telomerase/metabolismo , Homeostase do Telômero/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...