Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vox Sang ; 115(2): 159-166, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31769038

RESUMO

BACKGROUND AND OBJECTIVES: Although HLA-eliminated platelets can facilitate transfusions to patients possessing HLA antibodies, no such products are currently available commercially perhaps because the platelet collection rate is not yet economically viable. We have improved this process' efficiency by employing a hollow-fibre system at the last step of the production process after an acid and a reaction buffer have been washed out conventionally by centrifugation. MATERIALS AND METHODS: HLA-eliminated platelets were prepared via four distinct steps: chilled on ice, treated with an acid solution, diluted and finally washed using the hollow-fibre system. The efficiency of this platelet recovery process was determined. The resulting products' platelet characteristics, including a capacity for HLA expression, were evaluated in vitro and compared in detail to their corresponding originals. RESULTS: The average efficiency of platelet recovery was 91%. Although the expression levels of CD62P, a molecular marker for platelet activation, were approximately threefold higher on new platelets than on the original platelets, their HLA expression levels were lower. The phagocytosis assay, with monoclonal antibodies and cognate HLA antibody-containing sera, suggested that HLA-ABC molecules on the cell surface were sufficiently removed. The platelet functions, including the agonist-induced aggregability and adherence/aggregability of the collagen-coated plates under certain conditions, were conserved and not significantly different from the original ones. CONCLUSION: We propose a novel preparation system for producing HLA-eliminated platelets without centrifugation, which ensures a highly efficient, and therefore, much more economical method of platelet recovery that also retains their key functionality.


Assuntos
Plaquetas/citologia , Separação Celular/métodos , Anticorpos Monoclonais/imunologia , Plaquetas/imunologia , Separação Celular/instrumentação , Separação Celular/normas , Centrifugação/efeitos adversos , Antígenos HLA/imunologia , Humanos , Selectina-P/genética , Selectina-P/metabolismo , Ativação Plaquetária
2.
Lab Chip ; 15(19): 3941-51, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26308935

RESUMO

The reconstitution of extracellular matrix (ECM) components in three-dimensional (3D) cell culture environments with microscale precision is a challenging issue. ECM microparticles would potentially be useful as solid particulate scaffolds that can be incorporated into 3D cellular constructs, but technologies for transforming ECM proteins into cell-sized stable particles are currently lacking. Here, we describe new processes to produce highly condensed collagen microparticles by means of droplet microfluidics or membrane emulsification. Droplets of an aqueous solution of type I collagen were formed in a continuous phase of polar organic solvent followed by rapid dissolution of water molecules into the continuous phase because the droplets were in a non-equilibrium state. We obtained highly unique, disc-shaped condensed collagen microparticles with a final collagen concentration above 10% and examined factors affecting particle size and morphology. After testing the cell-adhesion properties on the collagen microparticles, composite multicellular spheroids comprising the particles and primary rat hepatocytes were formed using microfabricated hydrogel chambers. We found that the ratio of the cells and particles is critical in terms of improvement of hepatic functions in the composite spheroids. The presented methodology for incorporating particulate-form ECM components in multicellular spheroids would be advantageous because of the biochemical similarity with the microenvironments in vivo.


Assuntos
Colágeno Tipo I/química , Hepatócitos/citologia , Microesferas , Esferoides Celulares/citologia , Animais , Adesão Celular , Células Cultivadas , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Camundongos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microscopia de Fluorescência , Células NIH 3T3 , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Esferoides Celulares/metabolismo
3.
Biomicrofluidics ; 7(5): 54120, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24396529

RESUMO

In this study, a microfluidic process is proposed for preparing monodisperse micrometer-sized hydrogel beads. This process utilizes non-equilibrium aqueous droplets formed in a polar organic solvent. The water-in-oil droplets of the hydrogel precursor rapidly shrunk owing to the dissolution of water molecules into the continuous phase. The shrunken and condensed droplets were then gelled, resulting in the formation of hydrogel microbeads with sizes significantly smaller than the initial droplet size. This study employed methyl acetate as the polar organic solvent, which can dissolve water at 8%. Two types of monodisperse hydrogel beads-Ca-alginate and chitosan-with sizes of 6-10 µm (coefficient of variation < 6%) were successfully produced. In addition, we obtained hydrogel beads with non-spherical morphologies by controlling the degree of droplet shrinkage at the time of gelation and by adjusting the concentration of the gelation agent. Furthermore, the encapsulation and concentration of DNA molecules within the hydrogel beads were demonstrated. The process presented in this study has great potential to produce small and highly concentrated hydrogel beads that are difficult to obtain by using conventional microfluidic processes.

4.
Langmuir ; 28(39): 14073-80, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22991929

RESUMO

This study presents a simple but highly versatile method of fabricating picoliter-volume hydrogel patterns on poly(dimethylsiloxane) (PDMS) substrates. Hydrophilic regions were prepared on hydrophobic PDMS plates by trapping and melting functional polymer particles and performing subsequent reactions with partially oxidized dextran. Small aliquots of a gelation solution were selectively trapped on the hydrophilic areas by a simple dipping process that was utilized to make thin hydrogel patterns by the in situ gelation of a sol solution. Using this process, we successfully formed calcium alginate, collagen I, and chitosan hydrogels with a thickness of several micrometers and shapes that followed the hydrophilized regions. In addition, alginate and collagen gel patterns were used to capture cells with different adhesion properties selectively on or off the hydrogel structures. The presented strategy could be applicable to the preparation of a variety of hydrogels for the development of functional biosensors, bioreactors, and cell cultivation platforms.


Assuntos
Dimetilpolisiloxanos/química , Hidrogéis/química , Alginatos/química , Quitosana/química , Colágeno Tipo I/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Hidrogéis/síntese química , Interações Hidrofóbicas e Hidrofílicas , Soluções
5.
Biomicrofluidics ; 5(2): 24103, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21584211

RESUMO

Selection of particles or cells of specific shapes from a complex mixture is an essential procedure for various biological and industrial applications, including synchronization of the cell cycle, classification of environmental bacteria, and elimination of aggregates from synthesized particles. Here, we investigate the separation behaviors of nonspherical and spherical particles∕cells in the hydrodynamic filtration (HDF) scheme, which was previously developed for continuous size-dependent particle∕cell separation. Nonspherical particle models were prepared by coating the hemisphere of spherical polymer particles with a thin Au layer and by bonding the Janus particles to form twins and triplets resembling dividing and aggregating cells, respectively. High-speed imaging revealed a difference in the separation behaviors of spherical and nonspherical particles at a branch point; nonspherical particles showed rotation behavior and did not enter the branch channel even when their minor axis was smaller than the virtual width of the flow region entering the branch channel, w(1). The confocal-laser high-speed particle intensity velocimetry system visualized the flow profile inside the HDF microchannel, demonstrating that the steep flow-velocity distribution at the branch point is the main factor causing the rotation behavior of nonspherical particles. As applications, we successfully separated spherical and nonspherical particles with various major∕minor lengths and also demonstrated the selection of budding∕single cells from a yeast cell mixture. We therefore conclude that the HDF scheme can be used for continuous shape-based particle∕cell separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...