Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931163

RESUMO

Maternal obesity and/or Western diet (WD) is associated with an increased risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in offspring, driven, in part, by the dysregulation of the early life microbiome. Here, using a mouse model of WD-induced maternal obesity, we demonstrate that exposure to a disordered microbiome from WD-fed dams suppressed circulating levels of endogenous ligands of the aryl hydrocarbon receptor (AHR; indole, indole-3-acetate) and TMAO (a product of AHR-mediated transcription), as well as hepatic expression of Il10 (an AHR target), in offspring at 3 weeks of age. This signature was recapitulated by fecal microbial transfer from WD-fed pregnant dams to chow-fed germ-free (GF) lactating dams following parturition and was associated with a reduced abundance of Lactobacillus in GF offspring. Further, the expression of Il10 was downregulated in liver myeloid cells and in LPS-stimulated bone marrow-derived macrophages (BMDM) in adult offspring, suggestive of a hypo-responsive, or tolerant, innate immune response. BMDMs from adult mice lacking AHR in macrophages exhibited a similar tolerogenic response, including diminished expression of Il10. Overall, our study shows that exposure to maternal WD alters microbial metabolites in the offspring that affect AHR signaling, potentially contributing to innate immune hypo-responsiveness and progression of MASLD, highlighting the impact of early life gut dysbiosis on offspring metabolism. Further investigations are warranted to elucidate the complex interplay between maternal diet, gut microbial function, and the development of neonatal innate immune tolerance and potential therapeutic interventions targeting these pathways.


Assuntos
Dieta Ocidental , Microbioma Gastrointestinal , Imunidade Inata , Receptores de Hidrocarboneto Arílico , Triptofano , Animais , Feminino , Gravidez , Dieta Ocidental/efeitos adversos , Triptofano/metabolismo , Camundongos , Receptores de Hidrocarboneto Arílico/metabolismo , Camundongos Endogâmicos C57BL , Interleucina-10/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Obesidade Materna/metabolismo , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Masculino , Macrófagos/metabolismo , Macrófagos/imunologia , Modelos Animais de Doenças
2.
Microorganisms ; 12(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38792758

RESUMO

To measure associations between gardening with different compost amendments and the human gut microbiota composition, gardeners (n = 25) were provided with one of three types of compost: chicken manure (CM), dairy manure and plant material (DMP), or plant-based (P). Stool samples were collected before gardening (T1), after compost amendment (T2), and at peak garden harvest (T3). Compost and soil samples were collected. DNA was extracted, 16S rRNA libraries were established, and libraries were sequenced by Illumina MiSeq. Sequences were processed using mothur, and data were analyzed in R software version 4.2.2. Fast expectation-maximization microbial source tracking analysis was used to determine stool bacteria sources. At T2/T3, the gut microbiotas of P participants had the lowest Shannon alpha diversity, which was also the trend at T1. In stool from T2, Ruminococcus 1 were less abundant in the microbiotas of those using P compost as compared to those using CM or DMP. At T2, Prevotella 9 had the highest abundance in the microbiotas of those using CM compost. In participants who used CM compost to amend their gardening plots, a larger proportion of the human stool bacteria were sourced from CM compared to soil. Soil exposure through gardening was associated with a small but detectable change in the gardeners' gut microbiota composition. These results suggest that human interactions with soil through gardening could potentially impact health through alterations to the gut microbiota.

3.
Front Endocrinol (Lausanne) ; 13: 921464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966074

RESUMO

Gestational diabetes mellitus (GDM) is associated with considerable imbalances in intestinal microbiota that may underlie pathological conditions in both mothers and infants. To more definitively identify these alterations, we evaluated the maternal and infant gut microbiota through the shotgun metagenomic analysis of a subset of stool specimens collected from a randomized, controlled trial in diet-controlled women with GDM. The women were fed either a CHOICE diet (60% complex carbohydrate/25% fat/15% protein, n=18) or a conventional diet (CONV, 40% complex carbohydrate/45% fat/15% protein, n=16) from 30 weeks' gestation through delivery. In contrast to other published studies, we designed the study to minimize the influence of other dietary sources by providing all meals, which were eucaloric and similar in fiber content. At 30 and 37 weeks' gestation, we collected maternal stool samples; performed the fasting measurements of glucose, glycerol, insulin, free fatty acids, and triglycerides; and administered an oral glucose tolerance test (OGTT) to measure glucose clearance and insulin response. Infant stool samples were collected at 2 weeks, 2 months, and 4-5 months of age. Maternal glucose was controlled to conventional targets in both diets, with no differences in Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). No differences in maternal alpha or beta diversity between the two diets from baseline to 37 weeks' gestation were observed. However, women on CHOICE diet had higher levels of Bifidobacteriaceae, specifically Bifidobacterium adolescentis, compared with women on CONV. Species-level taxa varied significantly with fasting glycerol, fasting glucose, and glucose AUC after the OGTT challenge. Maternal diet significantly impacted the patterns of infant colonization over the first 4 months of life, with CHOICE infants showing increased microbiome alpha diversity (richness), greater Clostridiaceae, and decreased Enterococcaceae over time. Overall, these results suggest that an isocaloric GDM diet containing greater complex carbohydrates with reduced fat leads to an ostensibly beneficial effect on the maternal microbiome, improved infant gut microbiome diversity, and reduced opportunistic pathogens capable of playing a role in obesity and immune system development. These results highlight the critical role a maternal diet has in shaping the maternal and infant microbiome in women with GDM.


Assuntos
Diabetes Gestacional , Microbiota , Bifidobacterium , Diabetes Gestacional/metabolismo , Dieta , Feminino , Glucose , Glicerol , Humanos , Lactente , Insulina , Gravidez
4.
Artigo em Inglês | MEDLINE | ID: mdl-36935840

RESUMO

Maternal consumption of a high-fat, Western-style diet (WD) disrupts the maternal/infant microbiome and contributes to developmental programming of the immune system and nonalcoholic fatty liver disease (NAFLD) in the offspring. Epigenetic changes, including non-coding miRNAs in the fetus and/or placenta may also underlie this risk. We previously showed that obese nonhuman primates fed a WD during pregnancy results in the loss of beneficial maternal gut microbes and dysregulation of cellular metabolism and mitochondrial dysfunction in the fetal liver, leading to a perturbed postnatal immune response with accelerated NAFLD in juvenile offspring. Here, we investigated associations between WD-induced maternal metabolic and microbiome changes, in the absence of obesity, and miRNA and gene expression changes in the placenta and fetal liver. After ~8-11 months of WD feeding, dams were similar in body weight but exhibited mild, systemic inflammation (elevated CRP and neutrophil count) and dyslipidemia (increased triglycerides and cholesterol) compared with dams fed a control diet. The maternal gut microbiome was mainly comprised of Lactobacillales and Clostridiales, with significantly decreased alpha diversity (P = 0.0163) in WD-fed dams but no community-wide differences (P = 0.26). At 0.9 gestation, mRNA expression of IL6 and TNF in maternal WD (mWD) exposed placentas trended higher, while increased triglycerides, expression of pro-inflammatory CCR2, and histological evidence for fibrosis were found in mWD-exposed fetal livers. In the mWD-exposed fetus, hepatic expression levels of miR-204-5p and miR-145-3p were significantly downregulated, whereas in mWD-exposed placentas, miR-182-5p and miR-183-5p were significantly decreased. Notably, miR-1285-3p expression in the liver and miR-183-5p in the placenta were significantly associated with inflammation and lipid synthesis pathway genes, respectively. Blautia and Ruminococcus were significantly associated with miR-122-5p in liver, while Coriobacteriaceae and Prevotellaceae were strongly associated with miR-1285-3p in the placenta; both miRNAs are implicated in pathways mediating postnatal growth and obesity. Our findings demonstrate that mWD shifts the maternal microbiome, lipid metabolism, and inflammation prior to obesity and are associated with epigenetic changes in the placenta and fetal liver. These changes may underlie inflammation, oxidative stress, and fibrosis patterns that drive NAFLD and metabolic disease risk in the next generation.

5.
J Hum Lact ; 38(2): 270-280, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34903081

RESUMO

BACKGROUND: Previous research examined effects of human milk on the infant gut microbiota, but little attention has been given to the microbiota of lactating women. RESEARCH AIM: To determine associations between exclusive human milk feeding and gut microbiota characteristics in mothers and infants at 6-weeks postpartum. METHODS: A sample of mother-infant dyads (N = 24) provided fecal samples and questionnaire responses at 6-weeks postpartum as part of the Pregnancy, EAting & POstpartum Diapers study. Deoxyribonucleic acid was extracted from stool samples, followed by (V4) 16S ribosomal ribonucleic acid gene amplicon sequencing. Alpha and beta diversity, in addition to taxa differences, were compared by human milk exposure status, exclusive versus non-exclusive. A subset of dyads (those exclusively fed human milk; n = 14) was analyzed for shared bifidobacterial species using polymerase chain reaction. RESULTS: Alpha diversity was significantly lower in exclusively human milk-fed infants. Maternal lactation status (exclusive vs. partial) and Shannon diversity were associated in univariate analysis but were no longer associated in multivariable regression including body mass index category in the model. Beta diversity (Sorensen dissimilarity) of fecal samples from women and infants was significantly associated with human milk feeding. Of six infants with Bifidobacterium longum subspecies longum in their fecal samples, all their mothers shared the same species. CONCLUSION: Maternal gut microbiotas differ by lactation status, a relationship potentially confounded by body mass index category. Further research is needed to identify whether lactation directly influences the maternal gut microbiota, which may be another mechanism by which lactation influences health.


Assuntos
Aleitamento Materno , Lactação , Bactérias/genética , Fezes , Feminino , Humanos , Lactente , Leite Humano/microbiologia , Período Pós-Parto , Gravidez
6.
Microorganisms ; 9(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34683461

RESUMO

The gut microbiota undergoes rapid changes during infancy in response to early-life exposures. We have investigated how the infant gut bacterial community matures over time and how exposures such as human milk and antibiotic treatment alter gut microbiota development. We used the LonGP program to create predictive models to determine the contribution of exposures on infant gut bacterial abundances from one month to two years of age. These models indicate that infant antibiotic use, human milk intake, maternal pre-pregnancy BMI, and sample shipping time were associated with changes in gut microbiome composition. In most infants, Bacteroides, Lachnospiraceae unclassified, Faecalibacterium, Akkermansia, and Phascolarctobacterium abundance increased rapidly after 6 months, while Escherichia, Bifidobacterium, Veillonella, and Streptococcus decreased in abundance over time. Individual, time-varying, random effects explained most of the variation in the LonGP models. Multivariate association with linear models (MaAsLin) displayed partial agreement with LonGP in the predicted trajectories over time and in relation to significant factors such as human milk intake. Multiple factors influence the dynamic changes in bacterial composition of the infant gut. Within-individual differences dominate the temporal variations in the infant gut microbiome, suggesting individual temporal variability is an important feature to consider in studies with a longitudinal sampling design.

7.
Microorganisms ; 9(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206664

RESUMO

Herein, we report the abundance and prevalence of HMO-metabolizing genes, specifically those of Bifidobacterium infantis, in fecal samples from human infants. Forty dyads were enrolled, and each mother collected a fecal sample from her infant at six months of age. Genomic DNA was extracted, and quantitative real-time PCR was used to determine gene abundance. The mode of delivery was not associated with gene abundance. Several gene regions, Sia (a sialidase), B. inf (16S), and GH750 (a glycoside hydrolase), were more abundant in the feces of human milk-fed infants (p < 0.05). Others, Sia and HC bin (16S), tended to be less abundant when a larger percentage of an infant's diet consisted of solids (p < 0.10). When accounting for solid food intake, human milk exposure was positively associated with Sia and B. inf (p < 0.05) and tended to be related to the abundance of the GH750 and HC bin (p < 0.10) gene regions. With further development and validation in additional populations of infants, these assays could be used to group samples by dietary exposure even where no record of dietary intake exists. Thus, these assays would provide a method by which infant human milk intake can be assessed quickly in any well-equipped molecular biology laboratory.

8.
Curr Res Physiol ; 4: 94-102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136830

RESUMO

BACKGROUND: As obesity rates continue to rise, it is increasingly important to understand factors that can influence body weight and growth, especially from an early age. The infant gut microbiota has broad effects on a variety of bodily processes, but its relation to infant growth is not yet fully characterized. Since the infant gut microbiota is closely related to breastfeeding practices and maternal health, understanding the relationship between these factors and infant growth may provide insight into the origins of childhood obesity. OBJECTIVES: Identify the relationship between human milk exposure, maternal pre-pregnancy body mass index (BMI), the infant gut microbiota, and 12-month-old BMI-for-age z-scores (12M BAZ) to identify key factors that shape infant growth. METHODS: Two Michigan cohorts (ARCHGUT and BABYGUT) comprised of a total of 33 mother-infant dyads provided infant fecal samples at 12M. After DNA extraction, amplification, and sequencing of the V4 16S rRNA region using Illumina MiSeq v2 Chemistry, gut bacterial diversity metrics were analyzed in relation to human milk exposure, maternal pre-pregnancy BMI, and infant growth parameters. RESULTS: Recent human milk exposure was inversely related to maternal pre-pregnancy BMI and most strongly associated with infant gut bacterial community membership and individual gut microbiota richness differences. Maternal pre-pregnancy BMI was not associated with the infant gut microbiota after adjusting for human milk exposure. However, maternal pre-pregnancy BMI was the only factor significantly associated with 12M BAZ. CONCLUSIONS: Human milk exposure is one of the central influences on the infant gut microbiota at 12M of age. However, the lack of association between the infant gut microbiota and 12M-old infant BAZ suggests that genetic, physiological, dietary, and other environmental factors may play a more direct role than the gut microbiota in determining infant BAZ at 12M.

9.
J Food Sci ; 86(2): 602-613, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33449409

RESUMO

Because microbes use carotenoids as an antioxidant for protection, dietary carotenoids could be associated with gut microbiota composition. We aimed to determine associations among reported carotenoid intake, plasma carotenoid concentrations, and fecal bacterial communities in pregnant women. Pregnant women (n = 27) were enrolled in a two-arm study designed to assess feasibility of biospecimen collection and delivery of a practical nutrition intervention. Plasma and fecal samples were collected and women were surveyed with a 24-hr dietary checklist and recalls. Plasma carotenoids were analyzed by HPLC using photodiode array detection. Fecal bacteria were analyzed by 16S rRNA DNA sequencing. Results presented are cross-sectional from the 36-week gestational study visit combined across both study arms due to lack of significant differences between intervention and usual care groups (n = 23 women with complete data). Recent intake of carotenoid-containing foods included carrots, sweet potatoes, mangos, apricots, and/or bell peppers for 48% of women; oranges/orange juice (17%); egg (39%); tomato/tomato-based sauces (52%); fruits (83%); and vegetables (65%). Average plasma carotenoid concentrations were 6.4 µg/dL α-carotene (AC), 17.7 µg/dL ß-carotene (BC), 11.4 µg/dL cryptoxanthin, 39.0 µg/dL trans-lycopene, and 29.8 µg/dL zeaxanthin and lutein. AC and BC concentrations were higher in women who recently consumed foods high in carotenoids. CR concentrations were higher in women who consumed oranges/orange juice. Microbiota α-diversity positively correlated with AC and BC. Microbiota ß-diversity differed significantly across reported intake of carotenoid containing foods and plasma concentrations of AC. This may reflect an effect of high fiber or improved overall dietary quality, rather than a specific effect of carotenoids. PRACTICAL APPLICATION: Little is known about the association between the gut microbiome and specific dietary microconstituents, such as carotenoids, especially during pregnancy. This research demonstrates that a carotenoid-rich diet during pregnancy supports a diverse microbiota, which could be one mechanism by which carotenoids promote health.


Assuntos
Bactérias/classificação , Carotenoides/análise , Carotenoides/sangue , Dieta , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Adulto , Estudos Transversais , Feminino , Análise de Alimentos , Humanos , Gravidez , RNA Ribossômico 16S/genética
10.
J Hum Lact ; 37(4): 703-713, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32926654

RESUMO

BACKGROUND: Maternal pre-pregnancy obesity and human milk feeding have been associated with altered infant gut microbiota. RESEARCH AIM: Determine the relationships between maternal pre-pregnancy BMI, human milk exposure, and their influence on the infant microbiota simultaneously. METHODS: This was a cross-sectional study of infants at 6 months of age (N = 36), a time when many infants are fed a mixed diet of human milk and other foods. Fecal samples and participant information were collected from a subset of dyads enrolled in two related prospective cohorts (ARCHGUT and BABYGUT) in Michigan. Sequencing the V4 region of the 16S gene was used to analyze fecal bacterial samples collected from 6-month-old infants. Participants were grouped into four categories designated by their extent of human milk exposure (100%, 80%, 50%-80%, ≤ 20% human milk in the infant diet) and by maternal pre-pregnancy BMI category (normal, overweight, obese). RESULTS: Fewer participants with pre-pregnancy obesity were breastfeeding at 6 months postpartum compared to non-obese participants (35.7% and 81.8%, respectively). In univariate analyses, maternal pre-pregnancy BMI and human milk exposure were both significantly associated with alpha and beta diversity of the infant microbiota. However, in multivariate analyses, human milk exposure accounted for 20% of the variation in alpha diversity, but pre-pregnancy BMI was not significantly associated with any form of microbiota diversity. CONCLUSIONS: The proportion of the infant diet that was human milk at 6 months was the major determinant of alpha and beta diversity of the infant. Maternal obesity contributes to the gut microbiota by its association with the extent of human milk feeding.


Assuntos
Microbioma Gastrointestinal , Leite Humano , Aleitamento Materno , Estudos Transversais , Feminino , Humanos , Lactente , Gravidez , Estudos Prospectivos
11.
PLoS One ; 15(6): e0234751, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555719

RESUMO

Perinatal factors can shape fecal microbiome patterns among pregnant women and their infants. However, there is scarce information about the effect of maternal demographics and perinatal exposures on antibiotic resistance genes (ARG) and mobile genetic element (MGE) patterns in pregnant women and infants. We examined fecal samples from pregnant women during their third trimester of pregnancy (n = 51) and 6-month-old infants (n = 40). Of the 91 participants, 72 represented 36 maternal-infant dyads, 15 were additional pregnant women, and 4 were additional infants. We assessed the effects of demographics, pre-pregnancy BMI, smoking and parity in the pregnancy resistome and the effects of demographics, delivery mode, feeding habits and prenatal antibiotic treatment on the infancy resistome. ARG and MGE richness and abundance were assessed using a SmartChip qPCR-array. Alpha diversity (Shannon and Inverse Simpson index) and beta diversity (Sorensen and Bray-Curtis index) were calculated. The Wilcoxon and the Kruskal non-parametric test were used for comparisons. There is a high variability in shared resistome patterns between pregnant women and their infants. An average of 29% of ARG and 24% of MGE were shared within dyads. Infants had significantly greater abundance and higher diversity of ARG and MGE compared to pregnant women. Pregnancy and infancy samples differed in ARG and MGE gene composition and structure. Composition of the fecal resistome was significantly associated with race in pregnant women, with non-white women having different patterns than white women, and, in infants, with extent of solid food consumption. Our data showed that the pregnancy and infancy resistome had different structure and composition patterns, with maternal race and infant solid food consumption as possible contributors to ARG. By characterizing resistome patterns, our results can inform the mechanism of antibiotic resistome development in pregnant women and their infants.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Antibacterianos/uso terapêutico , Bactérias/genética , Bactérias/isolamento & purificação , Índice de Massa Corporal , Aleitamento Materno , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Feminino , Humanos , Lactente , Paridade , Gravidez , Terceiro Trimestre da Gravidez , Análise de Componente Principal , Fatores de Risco , Fatores Sexuais , Fumar
12.
J Food Sci ; 85(5): 1596-1604, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32267970

RESUMO

The human gut microbiome has been classified into three distinct enterotypes (Bacteroides, Prevotella, and Ruminococcus). The relationship between probiotics and gut enterotype is not yet clear. Cayenne pepper is effective in vitro as a prebiotic for Bifidobacteria and Lactobacilli, so cayenne ingestion with probiotics may lead to more profound gut microbial shifts. We aimed to determine whether probiotics (with or without cayenne pepper) alter gut bacterial community composition and if these changes are associated with the original gut enterotype of the individual. A total of 27 adult participants provided three fecal samples: prior to probiotic treatment (baseline), post probiotic treatment (probiotic), and post probiotic plus cayenne pepper treatment (probiotic + cayenne). DNA was extracted, amplified, and the V4 region sequenced on the Illumina MiSeq platform using V2 chemistry. Sequence reads were processed in mothur and assigned using the SILVA reference by phylotype. Three enterotypes characterized the study population-Bacteroides (B; n = 6), Prevotella (P; n = 11), and Ruminoccocus (R; n = 10). There was no significant increase in probiotic genera in fecal samples after treatment periods. Alpha diversity scores were significantly lower in B-type but not in P- or R-type individuals after probiotic treatment. For the majority of individuals, their enterotype remained constant regardless of probiotic (and cayenne) treatment. This suggests that baseline gut community characteristics and enterotype classification influence responsiveness to probiotic treatment, but that enterotype is stable across administration of prebiotic and probiotics. PRACTICAL APPLICATION: A person's gut microbial community influences their responsiveness to probiotics and prebiotic ingredients. Consumers must understand that it is difficult to shift their gut microbiota even with simultaneous administration of prebiotic and probiotic. Greater understanding of these phenomena will enable consumers to choose the most efficacious products for their needs.


Assuntos
Bifidobacterium/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus/fisiologia , Probióticos/administração & dosagem , Adulto , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Bacteroides/isolamento & purificação , Fezes/microbiologia , Feminino , Humanos , Masculino , Prebióticos/administração & dosagem , Prevotella/genética , Prevotella/crescimento & desenvolvimento , Prevotella/isolamento & purificação , Ruminococcus/genética , Ruminococcus/crescimento & desenvolvimento , Ruminococcus/isolamento & purificação , Adulto Jovem
13.
PLoS One ; 14(3): e0213733, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30883572

RESUMO

BACKGROUND: About 25% of women in the United States are obese prior to becoming pregnant. Although there is some knowledge about the relationship between the gastrointestinal microbiota and obesity, little is known about the relationship between pre-pregnancy obesity and the gastrointestinal microbiota in pregnancy or its impact on infant gut microbiota. However, the composition of the gut microbiota early in life may influence childhood health. Thus, the objective of this research was to identify associations between maternal pre-pregnancy obesity and the pregnancy (n = 39) or early infancy (n = 39) microbiotas. RESULTS: Fecal bacterial communities from overweight women had lower microbiota diversity (Chao1: p = 0.02; inverse Simpson: p = 0.05; Shannon: p = 0.02) than communities from normal weight or obese women. The within-group microbiota composition of overweight women differed from those of normal and obese women at the genus and phylum levels (p = 0.003 and p = 0.02, respectively). Pre-pregnancy overweight women had higher abundances of Bacteroides and lower Phascolarctobacterium than women who were normal weight or obese prior to becoming pregnant. Normal weight women had lower abundances of Acidaminococcus and Dialister than overweight and obese women. Infant community composition tended to differ in membership (Sorensen index) by maternal pre-pregnancy BMI category, and significantly differed by delivery mode and breastfeeding exclusivity (p = 0.06, p = 0.001, p = 0.008, respectively). Infants from normal weight women had lower abundances of Megasphaera than infants from overweight or obese women. Streptococcus was lowest in infants from overweight women, and Staphylococcus was lowest in infants from obese women. CONCLUSION: Maternal and infant microbiotas are associated with and might be affected by maternal pre-pregnancy BMI. Future work should determine if there are also functional differences in the infant microbiome, if those functional differences are related to maternal pre-pregnancy BMI, and whether differences in composition or traits persist over time.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Adulto , Índice de Massa Corporal , Feminino , Humanos , Recém-Nascido , Masculino , Mães , Obesidade/microbiologia , Sobrepeso/microbiologia , Gravidez
14.
Plant Dis ; 102(7): 1307-1315, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30673581

RESUMO

Fusarium dieback (FD) is a new vascular disease of hardwood trees caused by Fusarium spp. and other associated fungal species which are vectored by two recently introduced and highly invasive species of ambrosia beetle (Euwallacea spp. nr. fornicatus). One of these ambrosia beetles is known as the polyphagous shot hole borer (PSHB) and the other as the Kuroshio shot hole borer (KSHB). Together with the fungi that they vector, this pest-disease complex is known as the shot hole borer-Fusarium dieback (SHB-FD) complex. Mitigation of this pest-disease complex currently relies on tree removal; however, this practice is expensive and impractical given the wide host range and rapid advancement of the beetles throughout hardwoods in southern California. This study reports on the assessment of various pesticides for use in the management of SHB-FD. In vitro screening of 13 fungicides revealed that pyraclostrobin, trifloxystrobin, and azoxystrobin generally have lower effective concentration that reduces 50% of mycelial growth (EC50) values across all fungal symbionts of PSHB and KSHB; metconazole was found to have lower EC50 values for Fusarium spp. and Paracremonium pembeum. Triadimefon and fluxapyroxad were not capable of inhibiting any fungal symbiont at the concentrations tested. A 1-year field study showed that two insecticides, emamectin benzoate alone and in combination with propiconazole, and bifenthrin, could significantly reduce SHB attacks. Two injected fungicides (tebuconazole and a combination of carbendazim and debacarb) and one spray fungicide (metconazole) could also significantly reduce SHB attacks. Bioassays designed to assess fungicide retention 1 year postapplication revealed that six of the seven fungicides exhibited some level of inhibition in vitro and all thiabendazole-treated trees sampled exhibiting inhibition. This study has identified several pesticides which can be implemented as part of an integrated pest management strategy to reduce SHB infestation in low to moderately infested landscape California sycamore trees and potentially other landscape trees currently affected by SHB-FD.


Assuntos
Besouros/microbiologia , Fungicidas Industriais/farmacologia , Fusarium/fisiologia , Árvores/microbiologia , Árvores/parasitologia , Animais , California , Besouros/classificação , Fusarium/classificação , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Insetos Vetores/microbiologia , Inseticidas/farmacologia , Espécies Introduzidas , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Piretrinas/farmacologia , Especificidade da Espécie , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...