Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591675

RESUMO

We study a moving adsorbate interacting with a metal electrode immersed in a solvent using the time-dependent Newns-Anderson-Schmickler model Hamiltonian. We have adopted a semiclassical trajectory treatment of the adsorbate to discuss the electron and energy transfers that occur between the adsorbate and the electrode. Using Keldysh Green's function scheme, we found a non-adiabatically suppressed electron transfer caused by the motion of the adsorbate and coupling with bath phonons that model the solvent. The energy is thus dissipated into electron-hole pair excitations, which are hindered by interacting with the solvent modes and facilitated by the applied electrode potential. The average energy transfer rate is discussed in terms of the electron friction coefficient and given an analytical expression in the slow-motion limit.

2.
Phys Rev E ; 104(1-1): 014124, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412212

RESUMO

The renormalization-group approaches for classical liquids in previous works required a repulsive reference such as a hard-core one when applied to systems with short-range repulsion. The need for the reference is circumvented here by using a functional-renormalization-group approach for integrating the hierarchical flow of correlation functions along a path of variable interatomic coupling. We introduce the cavity distribution functions to avoid the appearance of divergent terms and choose a path to reduce the error caused by the decomposition of higher order correlation functions. We demonstrate using exactly solvable one-dimensional models that the resulting scheme yields accurate thermodynamic properties and interatomic distribution at various densities when compared to integral-equation methods such as the hypernetted chain and the Percus-Yevick equation, even in the case where our hierarchical equations are truncated with the Kirkwood superposition approximation, which is valid for low-density cases.

3.
J Chem Phys ; 153(20): 201103, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33261487

RESUMO

Stabilizing mechanisms of three possible isomers (phenolate-keto, phenolate-enol, and phenol-enolate) of the oxyluciferin anion hydrated with quantum explicit water molecules in the first singlet excited state were investigated using first-principles Born-Oppenheimer molecular dynamics simulations for up to 1.8 ns (or 3.7 × 106 MD steps), revealing that the surrounding water molecules were distributed to form clear single-layered structures for phenolate-keto and multi-layered structures for phenolate-enol and phenol-enolate isomers. The isomers employed different stabilizing mechanisms compared to the ground state. Only the phenolate-keto isomer became attracted to the water molecules in its excited state and was stabilized by increasing the number of hydrogen bonds with nearby water molecules. The most stable isomer in the excited state was the phenolate-keto, and the phenolate-enol and phenol-enolate isomers were higher in energy by ∼0.38 eV and 0.57 eV, respectively, than the phenolate-keto. This was in contrast to the case of ground state in which the phenolate-enol was the most stable isomer.


Assuntos
Indóis/química , Pirazinas/química , Animais , Ânions/química , Vaga-Lumes/enzimologia , Ligação de Hidrogênio , Isomerismo , Substâncias Luminescentes/química , Simulação de Dinâmica Molecular , Teoria Quântica , Termodinâmica , Água/química
4.
Phys Chem Chem Phys ; 22(35): 19401-19442, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32869776

RESUMO

Multi-electron, multi-proton transfer is important in a wide spectrum of processes spanning biological, chemical and physical systems. These reactions have attracted significant interest due to both fundamental curiosity and potential applications in energy technology. In this Perspective Review, we shed light on modern aspects of electrode processes in the 21st century, in particular on the recent advances and challenges in multistep electron/proton transfers at solid-liquid interfaces. Ongoing developments of analytical techniques and operando spectrometry at electrode/electrolyte interfaces and reliable computational approaches to simulate complicated interfacial electrochemical reactions enable us to obtain microscopic insights about these complex processes, such as the role of quantum effects in electrochemical reactions. Our motivation in this Perspective Review is to provide a comprehensive survey and discussion of state-of-the-art developments in experiments, materials, and theories for modern electrode process science, as well as to present an outlook for the future directions in this field.

5.
J Chem Theory Comput ; 15(10): 5474-5482, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31545602

RESUMO

Experimental photoabsorption spectra of three possible isomers (phenolate-keto, phenolate-enol, and phenol-enolate) of oxyluciferin anions in aqueous solution were reproduced by first-principles time-dependent density functional theory simulations in which the entire system including the oxyluciferin anion and 64 water molecules were modeled by full quantum mechanics (full QM), unlike the conventional hybrid method, where the surrounding water molecules are modeled by molecular mechanics (MM) or a continuum solvent model. The full QM photoabsorption spectra were calculated from 1000 structures that had been obtained using the first-principles Born-Oppenheimer molecular dynamics simulations, which included the van der Waals correction, to take into account the effect of dynamical fluctuations of the hydration structure. The full QM calculation with CAM-B3LYP functional, which is the most elaborate one and is apparently the most consistent with experiment, is compared to others obtained with different levels of the functional and the solvent model. The amount of charge leakage from the oxyluciferin anions to the aqueous solution is found to differ significantly between the ground and excited states and is strongly dependent on the simulation method. The conventional solvent models do not take this into account, but the QM/MM can do it appropriately when including more than 10 water molecules into the QM region.

6.
J Phys Condens Matter ; 31(8): 085901, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30530933

RESUMO

We demonstrate the feasibility of performing sufficient configurational sampling of disordered oxides directly from first-principles without resorting to the use of fitted models such as cluster expansion. This is achieved by harnessing the power of modern-day cluster supercomputers using the replica exchange Monte Carlo method coupled directly with structural relaxation and energy calculation performed by density functional codes. The idea is applied successfully to the calculation of the temperature-dependence of the degree of inversion in the cation sublattice of MgAl2O4 spinel oxide. The possibility of bypassing fitting models will lead to investigation of disordered systems where cluster expansion is known to perform badly, for example, systems with large lattice deformation due to defects, or systems where long-range interactions dominate such as electrochemical interfaces.

7.
J Chem Phys ; 149(16): 164702, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384717

RESUMO

Hydrogen adsorption on Pt(111) has been actively studied using semilocal approximations within the density functional theory featuring simultaneous adsorption of hydrogen on multiple sites, i.e., fcc, atop, and hcp. Considering the accuracy needed to detail the feature, we revisit this problem with the help of higher level of theory, the adiabatic connection fluctuation dissipation theorem within the random phase approximation. Our simulation emphasizes important roles played by the equilibrium lattice parameter of the surface, mass of the hydrogen isotope, and hydrogen coverage. The insight acquired in this study provides a way to consistently interpret electrochemical and spectroscopic data.

8.
Phys Chem Chem Phys ; 20(13): 8744-8752, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29541707

RESUMO

We report first-principles simulation of polarization mechanisms in hydroxyapatite to explain the underlying mechanism behind the reported ion conductivities and polarization under electrical poling at elevated temperatures. It is found that ion conduction occurs mainly in the column of OH- ions along the c-axis through a combination of the flipping of OH- ions, exchange of proton vacancies between OH- ions, and the hopping of the OH- vacancy. The calculated activation energies are consistent with those found in conductivity measurements and thermally stimulated depolarization current measurements.

9.
Adv Mater ; 30(2)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29171690

RESUMO

2D anisotropic Dirac cones are observed in χ3 borophene, a monolayer boron sheet, using high-resolution angle-resolved photoemission spectroscopy. The Dirac cones are centered at the X and X' points. The data also reveal that the hybridization between borophene and Ag(111) is very weak, which explains the preservation of the Dirac cones. As χ3 borophene has been predicated to be a superconductor, the results may stimulate further research interest in the novel physics of borophene, such as the interplay between Cooper pairs and the massless Dirac fermions.

10.
Nat Commun ; 8(1): 1007, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044100

RESUMO

Topological nodal line semimetals, a novel quantum state of materials, possess topologically nontrivial valence and conduction bands that touch at a line near the Fermi level. The exotic band structure can lead to various novel properties, such as long-range Coulomb interaction and flat Landau levels. Recently, topological nodal lines have been observed in several bulk materials, such as PtSn4, ZrSiS, TlTaSe2 and PbTaSe2. However, in two-dimensional materials, experimental research on nodal line fermions is still lacking. Here, we report the discovery of two-dimensional Dirac nodal line fermions in monolayer Cu2Si based on combined theoretical calculations and angle-resolved photoemission spectroscopy measurements. The Dirac nodal lines in Cu2Si form two concentric loops centred around the Γ point and are protected by mirror reflection symmetry. Our results establish Cu2Si as a platform to study the novel physical properties in two-dimensional Dirac materials and provide opportunities to realize high-speed low-dissipation devices.

11.
Phys Chem Chem Phys ; 19(15): 10028-10035, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28367576

RESUMO

In this study, the effect of hydration on the absorption spectra of oxyluciferin anion isomers in an aqueous solution is investigated for elucidating the influence of characteristic hydration structures. Using a canonical ensemble of hydration structures obtained from first-principles molecular dynamics simulations, the instantaneous absorption spectra of keto-, enol-, and enolate-type aqueous oxyluciferin anions at room temperature are computed from a collection of QM/MM calculations using an explicit solvent. It is demonstrated that the calculations reproduce experimental results concerning spectral shifts and broadening, for which traditional methods based on quantum chemistry and the Franck-Condon approximation fail because of the molecular vibrations of oxyluciferin anions and dynamical fluctuations of their hydration structures. Although the first absorption band associated with the lowest energy excitation corresponds to a π-π* transition for all oxyluciferin anion isomers, the changes in this band upon hydration are different among the isomers. In particular, the bands of enol- and enolate-type of oxyluciferin anions are significantly blue-shifted by hydration, whereas those of the keto-type oxylucifeion anion are shifted relatively less. Thus, the order of the first-peak positions in the aqueous solution changed relative to that in vacuo. We ascribe this to the nature of the oxyluciferin anion being more hydrophobic in the keto form as compared with the enol and enolate isomers.


Assuntos
Indóis/química , Pirazinas/química , Água/química , Ânions/química , Indóis/metabolismo , Isomerismo , Simulação de Dinâmica Molecular , Pirazinas/metabolismo , Teoria Quântica , Termodinâmica
12.
J Chem Phys ; 146(14): 144304, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28411613

RESUMO

The first-principles GW+Bethe-Salpeter method is applied to [n]cycloparaphenylenes ([n]CPPs, n = 3-16) to explain why the experimental UV-vis absorption spectra for n = 7-16 are roughly size-insensitive, unlike the fluorescence spectra. Having confirmed that the calculated absorption spectra consistently exhibit size-insensitivity, the exciton properties are investigated in detail using a novel analysis method based on the two-particle picture. The size-insensitivity of large-sized [n]CPPs (n≥9) is found due to a common spatial distribution of the wave functions involved with the first dark exciton and the first bright exciton, which are characterized primarily by a number of the wave function nodes. The exciton wave function as well as other properties of smaller molecules of n = 7 and 8 is, on the contrary, size-sensitive, although and the peak positions are essentially size-insensitive because of the cancellation of size-dependence of exciton binding energy and orbital energy. Different size-sensitivity between absorption and fluorescence can thus be explained unless such cancellation also occurs for fluorescence.

13.
Phys Rev Lett ; 118(9): 096401, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306312

RESUMO

Honeycomb structures of group IV elements can host massless Dirac fermions with nontrivial Berry phases. Their potential for electronic applications has attracted great interest and spurred a broad search for new Dirac materials especially in monolayer structures. We present a detailed investigation of the ß_{12} sheet, which is a borophene structure that can form spontaneously on a Ag(111) surface. Our tight-binding analysis revealed that the lattice of the ß_{12} sheet could be decomposed into two triangular sublattices in a way similar to that for a honeycomb lattice, thereby hosting Dirac cones. Furthermore, each Dirac cone could be split by introducing periodic perturbations representing overlayer-substrate interactions. These unusual electronic structures were confirmed by angle-resolved photoemission spectroscopy and validated by first-principles calculations. Our results suggest monolayer boron as a new platform for realizing novel high-speed low-dissipation devices.

14.
J Chem Phys ; 146(4): 044303, 2017 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-28147542

RESUMO

We propose a method of classifying excitons into local-, Rydberg-, or charge transfer-type as a step toward enabling a data-driven material design of organic solar cells. The classification method is based on the first-principles many-body theory and improves over the conventional method based on state-by-state visualization of the one-electron wave functions. In our method, the exciton wave function is calculated within the level of the GW+Bethe-Salpeter equation, which is used to obtain two dimensionless parameters for the automatic classification. We construct criteria for exciton classification from experiences with a model molecule, dipeptide. Then we check the validity of our method using a model ß-dipeptide which has a geometry and an excitation spectrum similar to the model dipeptide. In addition, we test the effectiveness of the method using porphyrin molecules, or P1TA and P2TA, for which the conventional method is hampered by the strong state hybridization associated with excitation. We find that our method works successfully for P1TA, but the analysis of P2TA is hindered by its centrosymmetry.

15.
J Phys Chem B ; 120(34): 8776-83, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27479583

RESUMO

We investigated the stability of oxyluciferin anions (keto, enol, and enolate isomers) in aqueous solution at room temperature by performing a nanosecond time scale first-principles molecular dynamics simulation. In contrast to all previous quantum chemistry calculations, which suggested the keto-type to be the most stable, we show that the enol-type is slightly more stable than the keto-type, in agreement with some recent experimental studies. The simulation highlights the remarkable hydrophobicity of the keto-type by the cavity formed at the oxyluciferin-water interface as well as a reduction in hydrophobicity with the number of hydrating water molecules. It is therefore predicted that the isomeric form in a hydrated cluster is size-dependent.

16.
J Chem Phys ; 145(24): 244110, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28049299

RESUMO

We extend the Coleman's antisymmetrized geminal power (AGP) to develop a wave function theory that can incorporate up to four-body correlation in a region of strong correlation. To facilitate the variational determination of the wave function, the total energy is rewritten in terms of the traces of geminals. This novel trace formula is applied to a simple model system consisting of one dimensional Hubbard ring with a site of strong correlation. Our scheme significantly improves the result obtained by the AGP-configuration interaction scheme of Uemura et al. and also achieves more efficient compression of the degrees of freedom of the wave function. We regard the result as a step toward a first-principles wave function theory for a strongly correlated point defect or adsorbate embedded in an AGP-based mean-field medium.

17.
J Chem Phys ; 142(6): 064313, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25681912

RESUMO

We investigate optical properties of the nanographene family and predict a defect induced effect by utilizing the all-electron first-principles GW+Bethe-Salpeter equation (BSE) method based on the many-body perturbation theory. As an accuracy check of the GW+BSE, photoabsorption spectra are calculated for a grossly warped nanographene (C80H30), which was very recently synthesized [Kawasumi et al., Nat. Chem. 5, 739-744 (2013)]. The calculated spectra are found to faithfully reproduce the shape, height, and position of the measured peaks. Then the method is applied to the flat nanographene without defect (C24H12 and C38H16), the curved ones with single defect (C20H10, C28H14, and C32H16), and fragments of C80H30 with double defect (C36H16 and C42H20). The existence of the defects significantly changes the optical spectra. In particular, the interaction between the defects is found to break the symmetry of the atomic geometries and enhance the excitonic effect, thereby generating the extra peaks at the lower photon energy side of the main peak. The present results might help explain the origin of the first two peaks experimentally observed for C80H30.

18.
J Chem Phys ; 140(5): 054106, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24511921

RESUMO

The Tamm-Dancoff approximation (TDA), widely used in physics to decouple excitations and de-excitations, is well known to be good for the calculation of excitation energies but not for oscillator strengths. In particular, the sum rule is violated in the latter case. The same concern arises within the TDA in the calculation of nonadiabatic couplings (NACs) by time-dependent density functional theory (TDDFT), due to the similarities in the TDDFT formulations of NACs and oscillator strengths [C. Hu, H. Hirai, and O. Sugino, J. Chem. Phys. 127, 064103 (2007)]. In this study, we present a systematic evaluation of the performance of TDDFT/TDA for the calculation of NACs. In the cases we considered, including a variety of systems possessing Jahn-Teller and Renner-Teller intersections, as well as an example with accidental conical intersections, it is found that the TDDFT/TDA performs better than the full TDDFT, contrary to the conjecture that the TDA might cause the NAC results to deteriorate and violate the sum rule. The surprisingly good performance of the TDA for NACs is probably because the TDA can partially compensate for the local-density-approximation error and give better excitation energies in the vicinity of intersections of potential energy surfaces. Our study also shows that it is important to use the TDA based on the rigorous full-TDDFT formulation of NACs, instead of using it based on an alternative approximate formulation.

19.
J Chem Phys ; 140(4): 044703, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25669563

RESUMO

In this study, we propose that electrode potential fluctuations due to the thermal motion of the solvent may serve to enhance the catalytic activity of nanostructures. The proposed model uses a simple, Marcus-type treatment of the statistical behavior of the solvent and the Butler-Volmer law for the instantaneous catalytic rate as a function of the electrode potential. The rapid development of probing techniques with high spatial and temporal resolution will help to further confirm and characterize the dynamical properties of nanostructures.

20.
J Chem Phys ; 137(2): 024306, 2012 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22803535

RESUMO

Photoabsorption spectra are calculated for the magic number clusters, (CdSe)(3) and (CdSe)(6), using an all-electron mixed basis GW scheme with the excitonic effect incorporated by solving the Bethe-Salpeter equation (BSE). The GW+BSE calculation provided clear size dependence of the optical gap as expected, while magnitude of the gap is overestimated compared to available experimental one. The gap is found very similarly overestimated when using the local density approximation (LDA) within the density functional theory because accidental error cancellation occurs between the significantly underestimated LDA gap and the excitonic effect neglected therein. The excitonic states are described by superposition of many one-particle states that would not be properly described within a one-particle theory, as clearly visualized in the plot of the exciton wavefunctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...