Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(24): 15091-15097, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35702426

RESUMO

Although microbial fuel cells (MFCs) have been widely studied as wastewater treatment technologies that convert organic matter to electricity, there are few reports of large-scale MFCs that treat both organic matter and nitrogen compounds. In this study, a 226 L reactor equipped with 27 MFC units was partially aerated at 10% of its total volume. The MFC unit consists of a cylindrical air core covered with a carbon-based air cathode, an anion exchange membrane, and a graphite non-woven fabric anode. The air-cathode MFC with 13 L min-1 aeration rate produced a current density of 0.0012-0.15 A m-2 with 40 to >93% biological oxygen demand (BOD) removal to have an effluent BOD of <5-36 mg L-1 at a hydraulic retention time (HRT) of 12-47 h. Meanwhile, 55 ± 17% of the total nitrogen (TN) was removed, resulting in 9.7 ± 3.8 mg L-1 TN in the effluent, although the TN removal was limited at ≥20 °C. The mono-exponential regression for BOD and TN (≥20 °C) estimated that an HRT of 21 h could meet the Japanese effluent quality standards of BOD and TN. Calculation of the total energy recovered via current generation and energy consumed by aeration suggested an energy consumption of 0.22 kW h m-3. Decreasing the aeration rate and HRT in the reactor would further reduce energy consumption and increase energy production.

2.
Environ Res ; 205: 112416, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808126

RESUMO

Although the treatment of municipal wastewater using microbial fuel cells (MFCs) has been extensively studied, scaling the systems up for practical use remains challenging. In this study, a 226 L sewage treatment reactor was equipped with 27 MFC units, and its chemical oxygen demand (COD) removal and electricity production were evaluated. The MFC units were tubular air cores with a diameter of 5 cm and length of 100 cm, which were wrapped with a carbon-based cathode, anion exchange membrane (AEM), and nonwoven graphite fabric. The air-cathode-AEM MFC generated 0.12-0.30 A/m2, 0.072-0.51 W/m3, and 1.7-4.6 Wh/m3 in a chemostat reactor with a COD of 140-36 mg/L and hydraulic retention time (HRT) of 9-42 h throughout a year. The decrease in the COD was represented as the first-order rate constant of 0.038. The rate constant was comparable to that of other air-cathode MFCs with cation exchange membranes, indicating the necessity of a posttreatment to meet the discharge standard. It has been estimated that the MFC operation for 24 h before post-aeration can reduce the energy required to meet the discharge standard by 70%, suggesting the potential applicability of MFC in long HRT-treatments such as oxidation ditch. The resistances of the anode, cathode, and AEM were 15, 7.0, and 0.51 mΩ m2, respectively, and surface dirt rather than deterioration primarily increased the AEM resistance. A current exceeding 0.2 A/m2 significantly increases the anode potential, indicating that the current was limited by low COD. Increasing the anode-specific surface area can improve air-AEM MFCs used for practical applications.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Ânions , Eletricidade , Eletrodos , Águas Residuárias
3.
RSC Adv ; 11(33): 20036-20045, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35479885

RESUMO

Calculations of chemical oxygen demand (COD) degradation in sewage by a microbial fuel cell (MFC) were used to estimate the total energy required for treatment of the sewage. Mono-exponential regression (MER) and the Michaelis-Menten equation (MME) were used to describe the MFC's COD removal rate (CRR). The tubular MFC used in this study (ϕ 5.0 × 100 cm) consisted of an air core surrounding a carbon-based cathode, an anion exchange membrane, and graphite non-woven fabric immersed in sewage. The MFC generated 0.26 A m-2 of the electrode area and 0.32 W m-3 of the sewage water, and 3.9 W h m-3 in a chemostat reactor supplemented continuously with sewage containing 180 mg L-1 of COD with a hydraulic retention time (HRT) of 12 h. The COD removal and coulombic efficiency (CE) were 46% and 19%, respectively, and the energy generation efficiency (EGE) was 0.054 kW h kg-1-COD. The CRR and current in the MFC were strongly dependent on the COD, which could be controlled by varying the HRT. The MER model predicted first-order rate constants of 0.054 and 0.034 for reactors with and without MFC, respectively. The difference in these values indicated that using MFC significantly increased the COD removal. The results of fitting the experimental data to the MME suggested that the total COD can be separated into nondegradable CODs (C n) and degradable CODs (C d) via MFC. The values of CRR for C d and CE suggest that MFC pretreatment for 12 hours prior to aeration results in a 75% decrease in net energy consumption while reducing sewage COD from 180 to 20 mg L-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...