Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 248: 116242, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38870834

RESUMO

The global outbreak of COVID-19 in December 2019 has highlighted rapid and accurate diagnostic tools for effective intervention. While the RT-PCR test offers 86 % sensitivity, uncertainties often require supplementary screening. This research investigates how carbon dots (CDs) can be utilized as markers for COVID-19 antibodies, taking advantage of their biocompatibility and low toxicity. CDs were synthesized using citric acid (CA) and APBA with boronic acid, enabling the detection of COVID-19 IgG antibodies with increased absorbance and fluorescence. Comprehensive analyses confirmed the successful synthesis of APBA-CDs, prompting further exploration of their impact on SARS-CoV-2 RNA. Increased absorbance levels were observed in categories K1, K2, and K3, attributed to the introduction of CDs into plasma, indicating effective binding of APBA-CDs to COVID-19 antibodies. In addition, the fluorescence tests consistently showed heightened levels across all categories, emphasizing the effective binding of APBA-CDs with COVID-19 antibodies, particularly in positive plasma samples. As a part of our analysis, we conducted a PCA test to validate the data, which revealed that APBA-CDs are specific to IgG+ antibodies. The results showed a sensitivity rate of 74 % and a specificity rate of 53 %, while, when tested for IgM antibodies, the sensitivity and specificity rates were 63 % and 27 %, respectively. These findings highlight the potential of APBA-CDs as a sensitive and specific marker for COVID-19 antibody detection, offering potential for diagnostic tool development.

2.
Mol Pharm ; 21(2): 801-812, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38217878

RESUMO

Cancer is a significant global public health concern, ranking as the leading cause of mortality worldwide. This study thoroughly explores boron-doped carbon dots (B-CDs) through a simple/rapid microwave-assisted approach and their versatile applications in cancer therapy. The result was highly uniform particles with an average diameter of approximately 4 nm. B-CDs exhibited notable properties, including strong fluorescence with a quantum yield of 33%. Colloid stability tests revealed their robustness within a pH range of 6-12, NaCl concentrations up to 0.5 M, and temperatures ranging from 30 to 60 °C. The study also delved into the kinetics of naproxen release from B-CDs as a drug delivery system. The loading efficacy of naproxen exceeded 55.56%. Under varying pH conditions, the release of naproxen from B-CDs conformed to the Peppas-Sahlin model, demonstrating the potential of Naproxen-loaded CDs for cancer drug delivery. In vitro cytotoxicity assessments, conducted using the CCK-8 Assay and flow cytometry, consistently indicated low toxicity with average cell viability exceeding 80%. An in vivo toxicity test on female mice administered 20 mg/kg of B-CDs for 31 days revealed reversible histological changes in the liver and kidneys, while the pancreas remained unaffected. Importantly, B-CDs did not impact the mice's physical behavior, body weight, or survival. In vivo experiments targeting benzo(a)pyrene-induced fibrosarcoma demonstrated the efficacy of B-CDs as naproxen carriers in the treatment of cancer. This in vivo study provides a thorough comprehension of B-CDs synthesis and toxicity and their potential applications in cancer therapy and drug delivery systems.


Assuntos
Antineoplásicos , Pontos Quânticos , Feminino , Animais , Camundongos , Pontos Quânticos/química , Boro , Naproxeno/uso terapêutico , Carbono/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...