Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Insight ; 3(5): 100194, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39228923

RESUMO

Decades have passed since the initial discovery of membrane-less nuclear compartments, commonly called nuclear bodies or nuclear condensates. These compartments have drawn attention to their unique characteristics and functions, especially after introducing "liquid-liquid phase separation" to this research field. While the majority of the studies on nuclear condensates have been conducted in multicellular organisms, recent genetic, biochemical, and cell biological analyses using the fission yeast Schizosaccharomyces pombe have yielded valuable insights into biomolecular condensates. This review article focuses on two 'classic' nuclear condensates and discusses how research using fission yeast has unveiled previously unknown functions of these known nuclear bodies.

2.
Nucleic Acids Res ; 52(15): 9174-9192, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38828770

RESUMO

The Cajal body, a nuclear condensate, is crucial for ribonucleoprotein assembly, including small nuclear RNPs (snRNPs). While Coilin has been identified as an integral component of Cajal bodies, its exact function remains unclear. Moreover, no Coilin ortholog has been found in unicellular organisms to date. This study unveils Mug174 (Meiosis-upregulated gene 174) as the Coilin ortholog in the fission yeast Schizosaccharomyces pombe. Mug174 forms phase-separated condensates in vitro and is often associated with the nucleolus and the cleavage body in vivo. The generation of Mug174 foci relies on the trimethylguanosine (TMG) synthase Tgs1. Moreover, Mug174 interacts with Tgs1 and U snRNAs. Deletion of the mug174+ gene in S. pombe causes diverse pleiotropic phenotypes, encompassing defects in vegetative growth, meiosis, pre-mRNA splicing, TMG capping of U snRNAs, and chromosome segregation. In addition, we identified weak homology between Mug174 and human Coilin. Notably, human Coilin expressed in fission yeast colocalizes with Mug174. Critically, Mug174 is indispensable for the maintenance of and transition from cellular quiescence. These findings highlight the Coilin ortholog in fission yeast and suggest that the Cajal body is implicated in cellular quiescence, thereby preventing human diseases.


Assuntos
Corpos Enovelados , Proteínas Nucleares , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Corpos Enovelados/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Humanos , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Meiose/genética , Splicing de RNA , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/genética , Hidroliases/metabolismo , Hidroliases/genética , Núcleo Celular/metabolismo , Metiltransferases
3.
Methods Mol Biol ; 2777: 231-256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478348

RESUMO

Knowledge regarding cancer stem cell (CSC) morphology is limited, and more extensive studies are therefore required. Image recognition technologies using artificial intelligence (AI) require no previous expertise in image annotation. Herein, we describe the construction of AI models that recognize the CSC morphology in cultures and tumor tissues. The visualization of the AI deep learning process enables insight to be obtained regarding unrecognized structures in an image.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Inteligência Artificial , Células-Tronco Neoplásicas , Tecnologia
4.
Biofactors ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37983968

RESUMO

Lipid droplets (LDs) are organelles that store excess lipids and provide fatty acids for energy production during starvation. LDs are also essential for cellular maintenance, but excessive accumulation of LDs triggers various cancers in addition to metabolic diseases such as diabetes. In this study, we aimed to develop a strategy to identify new genes that reduces accumulation of LDs in cancer cells using an RNA interference (RNAi) screening system employing artificial sequence-enriched shRNA libraries. Monitoring LDs by fluorescent activated cell sorting, the subsequently collected cumulative LDs cells, and shRNA sequence analysis identified a clone that potentially functioned to accumulate LDs. The clone showed no identical sequence to human Refseq. It showed very similar sequence to seven genes by allowing three mismatches. Among these genes, we identified the mediator complex subunit 6 (MED6) gene as a target of this shRNA. Silencing of MED6 led to an increase in LD accumulation and expression of the marker genes, PLIN2 and DGAT1, in fatty cells. MED6 is a member of the mediator complex that regulates RNA polymerase II transcription through transcription factor II. Some mediator complexes play important roles in both normal and pathophysiological transcription processes. These results suggest that MED6 transcriptionally regulates the genes involved in lipid metabolism and suppresses LD accumulation.

6.
Cell Biochem Biophys ; 81(3): 459-468, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421592

RESUMO

Stress response is an inherent mechanism in the endoplasmic reticulum (ER). The inducers of ER cause a specific cascade of reactions, leading to gene expression. Transmembrane protein 117 (TMEM117) is in the ER and plasma membrane. In our previous study, TMEM117 protein expression was found to be decreased by an ER stress inducer. However, the mechanism underlying this decrease in TMEM117 protein expression remains unclear. This study aimed to elucidate the mechanism underlying the decrease in TMEM117 protein expression during ER stress and identify the unfolded protein response (UPR) pathway related to decreased TMEM117 protein expression. We showed that the gene expression levels of TMEM117 were decreased by ER stress inducers and were regulated by PKR-like ER kinase (PERK), indicating that TMEM117 protein expression was regulated by the signaling pathway. Surprisingly, gene knockdown of activating transcription factor 4 (ATF4) downstream of PERK did not affect the gene expression of TMEM117. These results suggest that TMEM117 protein expression during ER stress is transcriptionally regulated by PERK but not by ATF4. TMEM117 has a potential to be a new therapeutic target against ER stress-related diseases.


Assuntos
Estresse do Retículo Endoplasmático , eIF-2 Quinase , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/metabolismo , Expressão Gênica
7.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982398

RESUMO

Artificial intelligence (AI) technology for image recognition has the potential to identify cancer stem cells (CSCs) in cultures and tissues. CSCs play an important role in the development and relapse of tumors. Although the characteristics of CSCs have been extensively studied, their morphological features remain elusive. The attempt to obtain an AI model identifying CSCs in culture showed the importance of images from spatially and temporally grown cultures of CSCs for deep learning to improve accuracy, but was insufficient. This study aimed to identify a process that is significantly efficient in increasing the accuracy values of the AI model output for predicting CSCs from phase-contrast images. An AI model of conditional generative adversarial network (CGAN) image translation for CSC identification predicted CSCs with various accuracy levels, and convolutional neural network classification of CSC phase-contrast images showed variation in the images. The accuracy of the AI model of CGAN image translation was increased by the AI model built by deep learning of selected CSC images with high accuracy previously calculated by another AI model. The workflow of building an AI model based on CGAN image translation could be useful for the AI prediction of CSCs.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Inteligência Artificial , Redes Neurais de Computação , Neoplasias/diagnóstico por imagem , Células-Tronco Neoplásicas , Processamento de Imagem Assistida por Computador/métodos
8.
Naunyn Schmiedebergs Arch Pharmacol ; 396(6): 1171-1185, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36692829

RESUMO

The anti-inflammatory drug celecoxib, the only inhibitor of cyclooxygenase-2 (COX-2) with anticancer activity, is used to treat rheumatoid arthritis and can cause endoplasmic reticulum (ER) stress by inhibiting sarco/ER Ca2 +-ATPase activity in cancer cells. This study aimed to investigate the correlation between celecoxib-induced ER stress and the effects of celecoxib against cell death signaling. Treatment of human colon cancer HCT116 cells with celecoxib reduced their viability and resulted in a loss of mitochondrial membrane potential ([Formula: see text]). Additionally, celecoxib treatment reduced the expression of genes involved in mitochondrial biogenesis and metabolism such as mitochondrial transcription factor A (TFAM) and uncoupling protein 2 (UCP2). Furthermore, celecoxib reduced transmembrane protein 117 (TMEM117), and RNAi-mediated knockdown of TMEM117 reduced TFAM and UCP2 expressions. These results suggest that celecoxib treatment results in the loss of [Formula: see text] by reducing TMEM117 expression and provide insights for the development of novel drugs through TMEM117 expression.


Assuntos
Neoplasias do Colo , Sulfonamidas , Humanos , Celecoxib/farmacologia , Sulfonamidas/farmacologia , Pirazóis/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Anti-Inflamatórios/farmacologia , Morte Celular , Apoptose
9.
Biomedicines ; 10(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625678

RESUMO

Deep learning is being increasingly applied for obtaining digital microscopy image data of cells. Well-defined annotated cell images have contributed to the development of the technology. Cell morphology is an inherent characteristic of each cell type. Moreover, the morphology of a cell changes during its lifetime because of cellular activity. Artificial intelligence (AI) capable of recognizing a mouse-induced pluripotent stem (miPS) cell cultured in a medium containing Lewis lung cancer (LLC) cell culture-conditioned medium (cm), miPS-LLCcm cell, which is a cancer stem cell (CSC) derived from miPS cell, would be suitable for basic and applied science. This study aims to clarify the limitation of AI models constructed using different datasets and the versatility improvement of AI models. The trained AI was used to segment CSC in phase-contrast images using conditional generative adversarial networks (CGAN). The dataset included blank cell images that were used for training the AI but they did not affect the quality of predicting CSC in phase contrast images compared with the dataset without the blank cell images. AI models trained using images of 1-day culture could predict CSC in images of 2-day culture; however, the quality of the CSC prediction was reduced. Convolutional neural network (CNN) classification indicated that miPS-LLCcm cell image classification was done based on cultivation day. By using a dataset that included images of each cell culture day, the prediction of CSC remains to be improved. This is useful because cells do not change the characteristics of stem cells owing to stem cell marker expression, even if the cell morphology changes during culture.

10.
MicroPubl Biol ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34423281

RESUMO

Targeted protein degradation is a powerful approach to study and inhibit protein function in vivo. Introduction of the auxin-inducible degron (AID) system to the fission yeast Schizosaccharomyces pombe was previously reported, but, to the best of our knowledge, no plasmid for constructing AID-tagged fission yeast strains has been described so far. Here, we describe two plasmids that facilitate the introduction of the mini auxin-inducible degron (mAID) tag with a FLAG epitope or GFP by the conventional PCR-based gene targeting method. Our experimental verification indicated that PCR-based mAID tagging is straightforward and that the auxin-degron system is useful for studying essential proteins in S. pombe.

11.
Yeast ; 38(11): 583-591, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34251689

RESUMO

The polymerase chain reaction (PCR)-based gene targeting method, which can delete a specific gene or introduce tags, has been widely utilized to study gene function in fission yeast. One of the critical steps in this method is to design primers for amplifying DNA fragments of deletion or tagging modules and for checking the integration of those DNA fragments at designated loci. Although the primer design tool Pombe PCR Primer Program (PPPP) is available for Schizosaccharomyces pombe, there is no such publicly available application for the other three fission yeast species, S. cryophilus, S. japonicus, and S. octosporus. Likewise, no application enabling DNA/protein sequence retrieval for these three fission yeast species is available either. Therefore, access to such functionality would substantially assist in retrieval of gene sequences of interest and primer design in these fission yeast species. In this report, we describe two applications for fission yeast study: Yesprit and Yeaseq. Yesprit is a primer design tool for strain construction using the PCR-based method, and Yeaseq is a sequence viewer that can acquire the DNA/protein sequences of specific genes. Both tools can be run on the Windows, macOS, and Linux platforms. We believe that the Yesprit and Yeaseq will facilitate research using the four fission yeast species.


Assuntos
Schizosaccharomyces , Marcação de Genes , Reação em Cadeia da Polimerase , Schizosaccharomyces/genética
12.
Biomolecules ; 10(6)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575396

RESUMO

Deep-learning workflows of microscopic image analysis are sufficient for handling the contextual variations because they employ biological samples and have numerous tasks. The use of well-defined annotated images is important for the workflow. Cancer stem cells (CSCs) are identified by specific cell markers. These CSCs were extensively characterized by the stem cell (SC)-like gene expression and proliferation mechanisms for the development of tumors. In contrast, the morphological characterization remains elusive. This study aims to investigate the segmentation of CSCs in phase contrast imaging using conditional generative adversarial networks (CGAN). Artificial intelligence (AI) was trained using fluorescence images of the Nanog-Green fluorescence protein, the expression of which was maintained in CSCs, and the phase contrast images. The AI model segmented the CSC region in the phase contrast image of the CSC cultures and tumor model. By selecting images for training, several values for measuring segmentation quality increased. Moreover, nucleus fluorescence overlaid-phase contrast was effective for increasing the values. We show the possibility of mapping CSC morphology to the condition of undifferentiation using deep-learning CGAN workflows.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , Animais , Feminino , Proteínas de Fluorescência Verde/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Óptica , Células Tumorais Cultivadas
13.
Cells ; 9(4)2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32295063

RESUMO

In eukaryotes, heterochromatin plays a critical role in organismal development and cell fate acquisition, through regulating gene expression. The evolutionarily conserved lysine-specific demethylases, Lsd1 and Lsd2, remove mono- and dimethylation on histone H3, serving complex roles in gene expression. In the fission yeast Schizosaccharomyces pombe, null mutations of Lsd1 and Lsd2 result in either severe growth defects or inviability, while catalytic inactivation causes minimal defects, indicating that Lsd1 and Lsd2 have essential functions beyond their known demethylase activity. Here, we show that catalytic mutants of Lsd1 or Lsd2 partially assemble functional heterochromatin at centromeres in RNAi-deficient cells, while the C-terminal truncated alleles of Lsd1 or Lsd2 exacerbate heterochromatin formation at all major heterochromatic regions, suggesting that Lsd1 and Lsd2 repress heterochromatic transcripts through mechanisms both dependent on and independent of their catalytic activities. Lsd1 and Lsd2 are also involved in the establishment and maintenance of heterochromatin. At constitutive heterochromatic regions, Lsd1 and Lsd2 regulate one another and cooperate with other histone modifiers, including the class II HDAC Clr3 and the Sirtuin family protein Sir2 for gene silencing, but not with the class I HDAC Clr6. Our findings explore the roles of lysine-specific demethylases in epigenetic gene silencing at heterochromatic regions.


Assuntos
Heterocromatina/metabolismo , Histona Desmetilases/metabolismo , Schizosaccharomyces/patogenicidade
14.
Chemosphere ; 250: 126267, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32114344

RESUMO

Biological methods for the removal of hexavalent chromium (Cr(VI)) from contaminated sites are safe and efficient. This is especially true because they employ microorganisms and nutrients. The use of appropriate nutrients is important for the methods to be economically feasible. This paper aims to investigate the role of polyphenol from sugarcane molasses, an inexpensive material derived from the waste of the sugar industry, as a nutrient that efficiently provides carbon for Cr(VI)-removing bacteria. The colored constituents of sugarcane molasses were characterized based on the activity of Cr(VI)-reduction and the support of bacterial growth. Molasses promoted Cr(VI)-reducing activity in a pH dependent manner. The activity was related to the colored constituents, excluding sugar, by using absorbent-column chromatography. Moreover, the activity was closely related to the polyphenol fractions, which were slightly different from those of the colored constituents. Unlike the colored constituents, the isolated sugar was sufficient to support the growth of bacteria. Polyphenols from sugarcane molasses could reduce Cr(VI) with no effect on bacterial growth. The removal of Cr(VI) combining molasses and Cr(VI)-reducing bacteria may present an additive and/or synergistic effect.


Assuntos
Biodegradação Ambiental , Cromo/química , Polifenóis/química , Bactérias/metabolismo , Carbono , Melaço , Nutrientes , Oxirredução , Saccharum
15.
Mol Cell ; 66(1): 50-62.e6, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28318821

RESUMO

Heterochromatin can be epigenetically inherited in cis, leading to stable gene silencing. However, the mechanisms underlying heterochromatin inheritance remain unclear. Here, we identify Fft3, a fission yeast homolog of the mammalian SMARCAD1 SNF2 chromatin remodeler, as a factor uniquely required for heterochromatin inheritance, rather than for de novo assembly. Importantly, we find that Fft3 suppresses turnover of histones at heterochromatic loci to facilitate epigenetic transmission of heterochromatin in cycling cells. Moreover, Fft3 also precludes nucleosome turnover at several euchromatic loci to prevent R-loop formation, ensuring proper replication progression. Our analyses show that overexpression of Clr4/Suv39h, which is also required for efficient replication through these loci, suppresses phenotypes associated with the loss of Fft3. This work uncovers a conserved factor critical for epigenetic inheritance of heterochromatin and describes a mechanism in which suppression of nucleosome turnover prevents formation of structural barriers that impede replication at fragile regions in the genome.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , DNA Fúngico/biossíntese , Epigênese Genética , Hereditariedade , Heterocromatina/metabolismo , Nucleossomos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , DNA Fúngico/genética , Genótipo , Heterocromatina/genética , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Nucleossomos/genética , Fenótipo , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Tempo
16.
Biochem Biophys Res Commun ; 486(1): 149-155, 2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-28285135

RESUMO

Mitochondrial membrane potential (ΔΨm) maintenance is physiologically critical in cells; its loss causes apoptotic signalling and cell death. Accumulating DNA mutations and unfolded proteins in stressed cells activate signalling pathways for cell death induction. Cancer cells often fail to die even in the presence of some death signalling proteins. Here, we report a short hairpin RNA (shRNA) with an artificial sequence, denoted Psi1 shRNA, which leads to ΔΨm loss in HCT116 cells. The Psi1 shRNA target gene was shown to encode transmembrane protein 117 (TMEM117). TMEM117 knockdown led to ΔΨm loss, increased reactive oxygen species levels, up-regulation of an endoplasmic reticulum (ER) stress sensor C/EBP homologous protein and active caspase-3 expression, and cell growth impairment, altering homeostasis towards cell death. TMEM117 levels were down-regulated in response to the ER stressor thapsigargin and decreased when cells showed ΔΨm loss. These results suggested that TMEM117 RNAi allowed apoptotic cell death. Therefore, TMEM117 probably mediates the signalling of ΔΨm loss in ER stress-mediated mitochondria-mediated cell death.


Assuntos
Apoptose/genética , Estresse do Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Interferência de RNA , Transdução de Sinais/genética , Western Blotting , Caspase 3/genética , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação para Baixo/efeitos dos fármacos , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/genética , Proteínas de Membrana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tapsigargina/farmacologia
17.
Nature ; 543(7643): 126-130, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28199302

RESUMO

Uniparental disomy (UPD), in which an individual contains a pair of homologous chromosomes originating from only one parent, is a frequent phenomenon that is linked to congenital disorders and various cancers. UPD is thought to result mostly from pre- or post-zygotic chromosome missegregation. However, the factors that drive UPD remain unknown. Here we use the fission yeast Schizosaccharomyces pombe as a model to investigate UPD, and show that defects in the RNA interference (RNAi) machinery or in the YTH domain-containing RNA elimination factor Mmi1 cause high levels of UPD in vegetative diploid cells. This phenomenon is not due to defects in heterochromatin assembly at centromeres. Notably, in cells lacking RNAi components or Mmi1, UPD is associated with the untimely expression of gametogenic genes. Deletion of the upregulated gene encoding the meiotic cohesin Rec8 or the cyclin Crs1 suppresses UPD in both RNAi and mmi1 mutants. Moreover, overexpression of Rec8 is sufficient to trigger UPD in wild-type cells. Rec8 expressed in vegetative cells localizes to chromosomal arms and to the centromere core, where it is required for localization of the cohesin subunit Psc3. The centromeric localization of Rec8 and Psc3 promotes UPD by uniquely affecting chromosome segregation, causing a reductional segregation of one homologue. Together, these findings establish the untimely vegetative expression of gametogenic genes as a causative factor of UPD, and provide a solid foundation for understanding this phenomenon, which is linked to diverse human diseases.


Assuntos
Regulação Fúngica da Expressão Gênica , Células Germinativas/metabolismo , Modelos Biológicos , Mutação , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Dissomia Uniparental/genética , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Ciclinas/deficiência , Ciclinas/genética , Diploide , Heterocromatina/metabolismo , Humanos , Meiose/genética , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferência de RNA , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Tempo , Dissomia Uniparental/patologia , Fatores de Poliadenilação e Clivagem de mRNA/deficiência , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
18.
EURASIP J Bioinform Syst Biol ; 2016(1): 7, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26941783

RESUMO

RNA interference (RNAi) screening is extensively used in the field of reverse genetics. RNAi libraries constructed using random oligonucleotides have made this technology affordable. However, the new methodology requires exploration of the RNAi target gene information after screening because the RNAi library includes non-natural sequences that are not found in genes. Here, we developed a web-based tool to support RNAi screening. The system performs short hairpin RNA (shRNA) target prediction that is informed by comprehensive enquiry (SPICE). SPICE automates several tasks that are laborious but indispensable to evaluate the shRNAs obtained by RNAi screening. SPICE has four main functions: (i) sequence identification of shRNA in the input sequence (the sequence might be obtained by sequencing clones in the RNAi library), (ii) searching the target genes in the database, (iii) demonstrating biological information obtained from the database, and (iv) preparation of search result files that can be utilized in a local personal computer (PC). Using this system, we demonstrated that genes targeted by random oligonucleotide-derived shRNAs were not different from those targeted by organism-specific shRNA. The system facilitates RNAi screening, which requires sequence analysis after screening. The SPICE web application is available at http://www.spice.sugysun.org/.

19.
Mol Cell ; 61(5): 747-759, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26942678

RESUMO

Erh1, the fission yeast homolog of Enhancer of rudimentary, is implicated in meiotic mRNA elimination during vegetative growth, but its function is poorly understood. We show that Erh1 and the RNA-binding protein Mmi1 form a stoichiometric complex, called the Erh1-Mmi1 complex (EMC), to promote meiotic mRNA decay and facultative heterochromatin assembly. To perform these functions, EMC associates with two distinct complexes, Mtl1-Red1 core (MTREC) and CCR4-NOT. Whereas MTREC facilitates assembly of heterochromatin islands coating meiotic genes silenced by the nuclear exosome, CCR4-NOT promotes RNAi-dependent heterochromatin domain (HOOD) formation at EMC-target loci. CCR4-NOT also assembles HOODs at retrotransposons and regulated genes containing cryptic introns. We find that CCR4-NOT facilitates HOOD assembly through its association with the conserved Pir2/ARS2 protein, and also maintains rDNA integrity and silencing by promoting heterochromatin formation. Our results reveal connections among Erh1, CCR4-NOT, Pir2/ARS2, and RNAi, which target heterochromatin to regulate gene expression and protect genome integrity.


Assuntos
Proteínas de Transporte/metabolismo , Montagem e Desmontagem da Cromatina , Heterocromatina/metabolismo , Meiose , Interferência de RNA , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Proteínas de Transporte/genética , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Regulação Fúngica da Expressão Gênica , Heterocromatina/genética , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , RNA Fúngico/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Retroelementos , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
20.
Redox Biol ; 6: 599-606, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26516985

RESUMO

The freshwater planarian is a model organism used to study tissue regeneration that occupies an important position among multicellular organisms. Planarian genomic databases have led to the identification of genes that are required for regeneration, with implications for their roles in its underlying mechanism. Coenzyme Q (CoQ) is a fundamental lipophilic molecule that is synthesized and expressed in every cell of every organism. Furthermore, CoQ levels affect development, life span, disease and aging in nematodes and mice. Because CoQ can be ingested in food, it has been used in preventive nutrition. In this study, we investigated the role of CoQ in planarian regeneration. Planarians synthesize both CoQ9 and rhodoquinone 9 (RQ9). Knockdown of Smed-dlp1, a trans-prenyltransferase gene that encodes an enzyme that synthesizes the CoQ side chain, led to a decrease in CoQ9 and RQ9 levels. However, ATP levels did not consistently decrease in these animals. Knockdown animals exhibited tissue regression and curling. The number of mitotic cells decreased in Smed-dlp1 (RNAi) animals. These results suggested a failure in physiological cell turnover and stem cell function. Accordingly, regenerating planarians died from lysis or exhibited delayed regeneration. Interestingly, the observed phenotypes were partially rescued by ingesting food supplemented with α-tocopherol. Taken together, our results suggest that oxidative stress induced by reduced CoQ9 levels affects planarian regeneration and tissue homeostasis.


Assuntos
Dimetilaliltranstransferase/metabolismo , Regeneração , Ubiquinona/biossíntese , Sequência de Aminoácidos , Animais , Antioxidantes/farmacologia , Vias Biossintéticas , Dimetilaliltranstransferase/genética , Técnicas de Silenciamento de Genes , Homeostase , Dados de Sequência Molecular , Planárias , Interferência de RNA , RNA Interferente Pequeno/genética , alfa-Tocoferol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA